Câu hỏi:

27/10/2025 18 Lưu

PHẦN IV. Câu hỏi tự luận.Thí sinh trình bày lời giải vào giấy làm bài.

Một công ty điện tử sản xuất hai kiểu radio trên hai dây chuyền độc lập. Radio kiểu một sản xuất trên dây chuyền một với công suất \(45\) radio/ngày, radio kiểu hai sản xuất trên dây chuyền hai với công suất \(80\) radio/ngày. Để sản xuất một chiếc radio kiểu một cần \(12\) linh kiện, để sản xuất một chiếc radio kiểu hai cần \(9\) linh kiện. Tiền lãi khi bán một chiếc radio kiểu một là \(250000\) đồng, lãi thu được khi bán một chiếc radio kiểu hai là \(180000\) đồng. Biết rằng số linh kiện có thể sử dụng tối đa trong một ngày là \(900\). Gọi \({x_0}\), \({y_0}\) lần lượt là số radio kiểu một và radio kiểu hai sản suất được trong một ngày để tiền lãi thu được là nhiều nhất. Tính tổng \(T = {x_0} + 2{y_0}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\) và \(y\) lần lượt là số radio kiểu một và số radio kiểu hai mà công ty này sản xuất trong một ngày \(\left( {x,y \in {\mathbb{N}^*}} \right)\).

Số tiền lãi mà công ty này thu về hàng ngày là \(P = 250000x + 180000y\) đồng.

Ta có hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{12x + 9y \le 900}\\{0 \le x \le 45}\\{0 \le y \le 80.}\end{array}} \right.\)

Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(P = 250000x + 180000y\) trên miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{12x + 9y \le 900}\\{0 \le x \le 45}\\{0 \le y \le 80.}\end{array}} \right.\)

Một công ty điện tử sản xuất hai kiểu radio trên hai dây chuyền độc lập. Radio kiểu một sản xuất trên dây chuyền một với công suất 45 radio/ngày, radio kiểu hai sản xuất trên dây chuyền hai với công suất 80 radio/ngày. Tính tổng T =x0 + 2y0 (ảnh 1)

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{12x + 9y \le 900}\\{0 \le x \le 45}\\{0 \le y \le 80}\end{array}} \right.\) là miền ngũ giác \(OABCD\) trong đó \(O\left( {0;0} \right)\), \(A\left( {45;0} \right)\), \(B\left( {45;40} \right)\), \(C\left( {15;80} \right)\), \(D\left( {0;80} \right)\).

Tại \(O\left( {0;0} \right)\), ta có \(P = 250000 \cdot 0 + 180000 \cdot 0 = 0\).

Tại \(A\left( {45;0} \right)\) ta có \(P = 250000 \cdot 45 + 180000 \cdot 0 = 11250000\).

Tại \(B\left( {45;40} \right)\) ta có \(P = 250000 \cdot 45 + 180000 \cdot 40 = 18450000\).

Tại \(C\left( {15;80} \right)\) ta có \(P = 250000 \cdot 15 + 180000 \cdot 80 = 18150000\).

Tại \(D\left( {0;80} \right)\) ta có \(P = 250000 \cdot 0 + 180000 \cdot 80 = 14400000\).

Ta thấy biểu thức \(P = 250000x + 180000y\) đạt giá trị lớn nhất khi \({x_0} = 45\), \({y_0} = 40\).

Vậy \(T = {x_0} + 2{y_0} = 125\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\widehat {ATB} = \widehat {TBN} - \widehat {TAN} = 12,2^\circ \).

Áp dụng định lí sin cho tam giác \(TAB\): \(\frac{{TB}}{{\sin \widehat {TAB}}} = \frac{{AB}}{{\sin \widehat {ATB}}} \Rightarrow TB = \frac{{AB.\sin \widehat {TAB}}}{{\sin \widehat {ATB}}}\).

Xét tam giác vuông \(TBN\) ta có:

\(TN = TB.\sin \widehat {TBN} = \frac{{AB.\sin \widehat {TAB}.\sin \widehat {TBN}}}{{\sin \widehat {ATB}}} = \frac{{1536.\sin 27,4^\circ .\sin 39,6^\circ }}{{\sin 12,2^\circ }} \approx 2132,14\).

Vậy chiều cao ngọn núi xấp xỉ \(2132,14\) m.

Câu 2

A. Nếu \(a \ge b\) thì \({a^2} \ge {b^2}\).

B. Nếu một tam giác có một góc bằng \(60^\circ \)thì tam giác đó đều.

C. Nếu bạn tự tin thì bạn thành công.

D. Nếu \(a\) chia hết cho \(9\) thì \(a\) chia hết cho \(3\).

Lời giải

Chọn D

Phát biểu A: Tính đúng, sai của phát biểu phụ thuộc vào \(a,b\) nên khẳng định không phải là một mệnh đề.

Phát biểu B luôn đúng với mọi \(a\) nên là một mệnh đề đúng.

Phát biểu C không khẳng định được tính đúng, sai nên không phải là mệnh đề.

Phát biểu D là một mệnh đề sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP