Hình vẽ nào sau đây biểu diễn miền nghiệm của bất phương trình \(2x - 3y - 6 \le 0\) (miền không tô đậm kể cả bờ)?

A. H2
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 10 có đáp án !!
Quảng cáo
Trả lời:
Chọn C
Đường thẳng \(2x - 3y - 6 = 0\) đi qua hai điểm \(\left( {0; - 2} \right),\left( {3;0} \right)\) nên loại đáp án H2 và H4.
Mặt khác \(O\left( {0;0} \right)\) không thỏa mãn \(2x - 3y - 6 \le 0\) nên chọn hình H3.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\widehat {ATB} = \widehat {TBN} - \widehat {TAN} = 12,2^\circ \).
Áp dụng định lí sin cho tam giác \(TAB\): \(\frac{{TB}}{{\sin \widehat {TAB}}} = \frac{{AB}}{{\sin \widehat {ATB}}} \Rightarrow TB = \frac{{AB.\sin \widehat {TAB}}}{{\sin \widehat {ATB}}}\).
Xét tam giác vuông \(TBN\) ta có:
\(TN = TB.\sin \widehat {TBN} = \frac{{AB.\sin \widehat {TAB}.\sin \widehat {TBN}}}{{\sin \widehat {ATB}}} = \frac{{1536.\sin 27,4^\circ .\sin 39,6^\circ }}{{\sin 12,2^\circ }} \approx 2132,14\).
Vậy chiều cao ngọn núi xấp xỉ \(2132,14\) m.
Lời giải
Gọi \(x\) và \(y\) lần lượt là số radio kiểu một và số radio kiểu hai mà công ty này sản xuất trong một ngày \(\left( {x,y \in {\mathbb{N}^*}} \right)\).
Số tiền lãi mà công ty này thu về hàng ngày là \(P = 250000x + 180000y\) đồng.
Ta có hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{12x + 9y \le 900}\\{0 \le x \le 45}\\{0 \le y \le 80.}\end{array}} \right.\)
Bài toán trở thành tìm giá trị lớn nhất của biểu thức \(P = 250000x + 180000y\) trên miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{12x + 9y \le 900}\\{0 \le x \le 45}\\{0 \le y \le 80.}\end{array}} \right.\)

Miền nghiệm của hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{12x + 9y \le 900}\\{0 \le x \le 45}\\{0 \le y \le 80}\end{array}} \right.\) là miền ngũ giác \(OABCD\) trong đó \(O\left( {0;0} \right)\), \(A\left( {45;0} \right)\), \(B\left( {45;40} \right)\), \(C\left( {15;80} \right)\), \(D\left( {0;80} \right)\).
Tại \(O\left( {0;0} \right)\), ta có \(P = 250000 \cdot 0 + 180000 \cdot 0 = 0\).
Tại \(A\left( {45;0} \right)\) ta có \(P = 250000 \cdot 45 + 180000 \cdot 0 = 11250000\).
Tại \(B\left( {45;40} \right)\) ta có \(P = 250000 \cdot 45 + 180000 \cdot 40 = 18450000\).
Tại \(C\left( {15;80} \right)\) ta có \(P = 250000 \cdot 15 + 180000 \cdot 80 = 18150000\).
Tại \(D\left( {0;80} \right)\) ta có \(P = 250000 \cdot 0 + 180000 \cdot 80 = 14400000\).
Ta thấy biểu thức \(P = 250000x + 180000y\) đạt giá trị lớn nhất khi \({x_0} = 45\), \({y_0} = 40\).
Vậy \(T = {x_0} + 2{y_0} = 125\).
Câu 3
A. \[17,3{\rm{m}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Biết \[AH = 4{\rm{m}}\], \[HB = 20{\rm{m}}\], \[\widehat {BAC} = {45^^\circ }\]. Khi đó chiều cao của cây (làm tròn đến hàng phần mười) bằng