Câu hỏi:

27/10/2025 7 Lưu

Cặp số nào sau đây là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x + 2y \le 8\\3x - y > 3\end{array} \right.\) ?

A. \(\left( {2;3} \right)\).

B. \(\left( {4;1} \right)\).
C. \(\left( {1; - 1} \right)\). 
D. \(\left( {0;4} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Lần lượt thay các bộ số vào hệ bất phương trình ta được một nghiệm của hệ bất phương trình trên là \(\left( {4;1} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\widehat {ATB} = \widehat {TBN} - \widehat {TAN} = 12,2^\circ \).

Áp dụng định lí sin cho tam giác \(TAB\): \(\frac{{TB}}{{\sin \widehat {TAB}}} = \frac{{AB}}{{\sin \widehat {ATB}}} \Rightarrow TB = \frac{{AB.\sin \widehat {TAB}}}{{\sin \widehat {ATB}}}\).

Xét tam giác vuông \(TBN\) ta có:

\(TN = TB.\sin \widehat {TBN} = \frac{{AB.\sin \widehat {TAB}.\sin \widehat {TBN}}}{{\sin \widehat {ATB}}} = \frac{{1536.\sin 27,4^\circ .\sin 39,6^\circ }}{{\sin 12,2^\circ }} \approx 2132,14\).

Vậy chiều cao ngọn núi xấp xỉ \(2132,14\) m.

Lời giải

Chọn C

Đường thẳng \(2x - 3y - 6 = 0\) đi qua hai điểm \(\left( {0; - 2} \right),\left( {3;0} \right)\) nên loại đáp án H2 và H4.

Mặt khác \(O\left( {0;0} \right)\) không thỏa mãn \(2x - 3y - 6 \le 0\) nên chọn hình H3.

Câu 4

A. Nếu \(a \ge b\) thì \({a^2} \ge {b^2}\).

B. Nếu một tam giác có một góc bằng \(60^\circ \)thì tam giác đó đều.

C. Nếu bạn tự tin thì bạn thành công.

D. Nếu \(a\) chia hết cho \(9\) thì \(a\) chia hết cho \(3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP