Câu hỏi:

30/10/2025 523 Lưu

Để đo chiều cao \(CH\) của một tháp truyền hình, người ta chọn hai điểm quan sát \(A\), \(B\) trên mặt đất (hình vẽ). Biết CAH^=47°, CBH^=57° và \(AB = 63m\), tính chiều cao của tháp.
Để đo chiều cao CH của một tháp truyền hình, người ta chọn hai điểm quan sát A, B trên mặt đất (hình vẽ). Biết góc CAH =47 độ , góc CBH = 57 độ  và AB = 63m, tính chiều cao của tháp. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\widehat {ACB} = \widehat {CBH} - \widehat {CAH} = {57^^\circ } - {47^^\circ } = {10^^\circ }\).

Áp dụng định lí sin ta có

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {CAH}}} \Rightarrow BC = \frac{{AB\sin \widehat {CAH}}}{{\sin \widehat {ACB}}} = \frac{{63\sin {{47}^^\circ }}}{{\sin {{10}^^\circ }}}\)

Suy ra \(CH = BC\sin \widehat {CBH} = \frac{{63\sin {{47}^^\circ }\sin {{57}^^\circ }}}{{\sin {{10}^^\circ }}} \approx 222,5m\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(a,b,c\) theo thứ tự là số học sinh chỉ thích Văn, Toán, Anh.

Khối 10 của một trường THPT có 440 em học sinh, trong đó có 250 em thích môn Văn, 210 em thích môn Toán, 240 em thích môn Anh, 65 em không thích môn nào, 75 em thích cả ba môn. Hỏi số em chỉ thích một trong ba môn trên là bao nhiêu? (ảnh 1)

\(x\)là số học sinh chỉ thích hai môn Văn, Toán.\(y\)

là số học sinh chỉ thích hai môn Anh, Toán.

\(z\)là số học sinh chỉ thích hai môn Văn, Anh.

Điều kiện \(a,b,c,x,y,z, \in \mathbb{N}\).

Số học sinh thích ít nhất một trong ba môn là

\(440 - 65 = 375{\rm{(em)}}{\rm{. }}\)

Ta có hệ phương trình

\[\left\{ {\begin{array}{*{20}{l}}{a + x + z + 75 = 250 &  & \left( 1 \right)}\\{b + x + y + 75 = 210 &  & \left( 2 \right)}\\{c + y + z + 75 = 240 &  & \left( 3 \right)}\\{a + b + c + x + y + z + 75 = 375 & \left( 4 \right)}\end{array}} \right.\]

Cộng (1), (2), (3) vế theo vế ta được \(a + b + c + 2(x + y + z) = 475\) (5)

Từ (4), (5) suy ra \(a + b + c = 125\).

Vậy có 125 em chỉ thích một trong ba môn trên.

Lời giải

Trả lời

0

 

 

 

Điều kiện: \(2m - 7 < m - 5 \Leftrightarrow m < 2\)

Để \(A \subset B\) thì \(\left\{ {\begin{array}{*{20}{l}}{2m - 7 \ge  - 3}\\{m - 5 < 1}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ge 2}\\{m < 6}\end{array} \Leftrightarrow 2 \le m < 6} \right.} \right.\).

Kết hợp với kiện thấy không có \(m\) thỏa yêu cầu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\cos \left( {90^\circ  + \alpha } \right) =  - \sin \alpha \].

B. \[\tan \left( {90^\circ  + \alpha } \right) = \cot \alpha \].

C. \[\sin \left( {90^\circ  + \alpha } \right) =  - \cos \alpha \].     
D. \[\cot \left( {90^\circ  + \alpha } \right) = \tan \alpha \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP