Cho\(\sin \alpha = \frac{1}{3}\) với \({90^0} < \alpha < {180^0}\). Giá trị của \(\cos \alpha \) bằng
A. \[ - \frac{2}{3}\].
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 10 có đáp án !!
Quảng cáo
Trả lời:
Chọn D
Có \(\sin \alpha = \frac{1}{3}\)\( \Rightarrow {\cos ^2}\alpha = 1 - \frac{1}{9} = \frac{8}{9}\) mà \({90^0} < \alpha < {180^0}\)\[ \Rightarrow \cos \alpha < 0 \Rightarrow \cos \alpha = - \frac{{2\sqrt 2 }}{3}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
a) |
S |
b) |
S |
c) |
S |
d) |
Đ |
(Đúng) Gọi \(x\), \(y\) (đơn vị: triệu đồng) tiền bác Minh đầu tư vào kho ta có hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y.}\end{array}} \right.\)
(Vì): Theo giả thiết ta có hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y.}\end{array}} \right.\)
(Sai) Miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho là một tứ giác.
(Vì): Miền nghiệm của hệ trên là miền tam giác \(ABC\) với \(A(180;60)\), \(B(120;40)\), \(C(200;40)\).
(Sai) Điểm \(C(200;40)\) không thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.
(Vì): Điểm \(C(200;40)\) thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.
(Sai) Điểm \(A(180;60)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.
(Vì): Điểm \(A(180;60)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.
Lời giải
|
Trả lời |
3 |
|
|
|
\(A \cap B = \emptyset \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m - 3 < \frac{{m + 2}}{4}}\\{m - 3 \ge - 1}\\{\frac{{m + 2}}{4} \le 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m < \frac{{14}}{3}}\\{m \ge 2}\\{m \le 6}\end{array} \Leftrightarrow 2 \le m < \frac{{14}}{3}} \right.} \right.\).
Vậy có các giá trị nguyên của \(m\) là: \(2;3;4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[r = \frac{{10\sqrt 3 }}{{31}}{\rm{cm}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(33\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



