Câu hỏi:

30/10/2025 188 Lưu

PHẦN IV. Câu hỏi tự luận. Thí sinh trình bày lời giải vào giấy làm bài.

 Để đo khoảng cách từ một điểm \(A\) trên bờ sông đến gốc cây \(C\) trên cù lao giữa sông, người ta chọn một điểm \(B\) cùng ở trên bờ với \(A\) sao cho từ \(A\) và \(B\) có thể nhìn thấy điểm \(C\). Ta đo được khoảng cách \(AB = 66\) m, CAB^=39°CBA^=69°. Tính độ dài \(AC\)

Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\hat C = {180^^\circ } - (\hat A + \hat B) = {72^^\circ }\).

Áp dụng định lí sin vào tam giác \(ABC\), ta có

\(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow AC = \frac{{AB \cdot \sin B}}{{\sin C}} = \frac{{66 \cdot \sin {{69}^^\circ }}}{{\sin {{72}^^\circ }}} \approx 64,8m\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

S

b)

S

c)

S

d)

Đ

 

(Đúng) Gọi \(x\), \(y\) (đơn vị: triệu đồng) tiền bác Minh đầu tư vào kho ta có hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y.}\end{array}} \right.\)

(Vì): Theo giả thiết ta có hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y \le 240}\\{y \ge 40}\\{x \ge 3y.}\end{array}} \right.\)

(Sai) Miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho là một tứ giác.

(Vì): Miền nghiệm của hệ trên là miền tam giác \(ABC\) với \(A(180;60)\), \(B(120;40)\), \(C(200;40)\).

Bác Minh có kế hoạch đầu tư không quá 240 triệu đồng vào hai khoản X và khoản Y. Để đạt được lợi nhuận thì khoản Y phải đầu tư ít nhất 40 triệu đồng và số tiền đầu tư cho khoản X phải ít nhất gấp ba lần số tiền cho khoản Y (ảnh 1)

(Sai) Điểm \(C(200;40)\) không thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.

(Vì): Điểm \(C(200;40)\) thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.

(Sai) Điểm \(A(180;60)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.

(Vì): Điểm \(A(180;60)\) là điểm có tung độ lớn nhất thuộc miền nghiệm của hệ bất phương trình tiền bác Minh đầu tư vào kho.

Câu 2

A. \[r = \frac{{10\sqrt 3 }}{{31}}{\rm{cm}}\].  

B. \[r = 2\sqrt 3 {\rm{cm}}\]. 
C. \[r = 1{\rm{cm}}\].     
D. \[r = \sqrt 3 {\rm{cm}}\].

Lời giải

Chọn D

Ta có

+ \(a = \sqrt {{b^2} + {c^2} - 2bc\cos A}  = \sqrt {{8^2} + {5^2} - 2.8.5.c{\rm{os6}}{{\rm{0}}^0}}  = 7{\rm{cm}}\).

+ \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5.\sin {60^0} = 10\sqrt 3 {\rm{c}}{{\rm{m}}^2};\;\;p = \frac{{a + b + c}}{2} = \frac{{7 + 8 + 5}}{2} = 10{\rm{cm}}\)

Suy ra \(r = \frac{S}{p} = \frac{{10\sqrt 3 }}{{10}} = \sqrt 3 {\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP