Câu hỏi:

28/10/2025 48 Lưu

Bạn Quân đứng ở đỉnh của tòa nhà và quan sát chiếc diều, nhận thấy góc nâng (góc nghiêng giữa phương từ mắt của bạn Quân tới chiếc diều và phương nằm ngang) là \(\alpha  = {28^^\circ }\); khoảng cách từ đỉnh tòa nhà tới mắt bạn Quân là \(1,1\)m. Cùng lúc đó ở dưới chân tòa nhà, bạn Nga cũng quan sát chiếc diều và thấy góc nâng là \(\beta  = {67^^\circ }\); khoảng cách từ mặt đất tới mắt bạn Nga cũng là \(1,1\)m. Biết chiều cao của tòa nhà là \(h = 26m\) (minh họa ở hình bên). Chiếc diều bay cao bao nhiêu mét so với mặt đất
Chiếc diều bay cao bao nhiêu mét so với mặt đất (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chiếc diều bay cao bao nhiêu mét so với mặt đất (ảnh 2)

Kí hiệu  là vị trí của chiếc diều.\(C\)

Từ điểm \(B\) vẽ đường thẳng \(Bx\) vuông góc với \(AB\).

Từ điểm \(C\) kẻ \(CH \bot Bx\) (\(H\) thuộc \(Bx\)).

Từ điểm \(A\) kẻ \(AK \bot CH\) (\(K\) thuộc \(CH\)).

Khi đó \(\widehat {CAK} = \alpha \) và \(\widehat {CBH} = \beta \).

Chiều cao của diều so với mặt đất chính là độ dài đoạn thẳng \(CH\).

Vì khoảng cách từ đỉnh tòa nhà tới mắt bạn \(A\) và khoảng cách từ mặt đất tới mắt bạn \(B\) đều là \(1,1\)m nên \(AB = h = 26\)m.

Tứ giác \(ABHK\) là hình chữ nhật.

\(\widehat {CAB} = \widehat {CAK} + \widehat {KAB} = {28^^\circ } + {90^^\circ } = {118^^\circ }\).

\(\widehat {CBA} = \widehat {ABH} - \widehat {CBH} = {90^^\circ } - {67^^\circ } = {23^^\circ }\).

Trong tam giác \(ABC\) ta có

\(\hat C = {180^^\circ } - \left( {\hat A + \hat B} \right) = {180^^\circ } - \left( {{{118}^^\circ } + {{23}^^\circ }} \right) = {39^^\circ }\).

Áp dụng định lí sin trong tam giác \(ABC\) ta có

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}} \Rightarrow BC = \frac{{AB\sin A}}{{\sin C}} = \frac{{26\sin {{118}^^\circ }}}{{\sin {{39}^^\circ }}} \approx 36\)

Trong tam giác \(CBH\) vuông tại \(H\) ta có

\(CH = BC\sin B \approx 36\sin {67^^\circ } \approx 34\)m

Vậy chiếc diều bay cao khoảng \(34,7\) mét so với mặt đất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời

1

0

 

 

 Gọi là số tấn trục sắt và đinh ốc sản xuất trong ngày.

Số tiền lãi mỗi ngày: \(L(x,y) = 2x + y\) (triệu đồng).

Số giờ làm việc mỗi ngày của máy cắt: \[3x + y\] (giờ).

Số giờ làm việc mỗi ngày của máy tiện: \(x + y\) (giờ).

Ta có hệ phương trình: \(\left\{ \begin{array}{l}3x + y \le 6\\x + y \le 4\\x \ge 0\\y \ge 0\end{array} \right.\,\)

Bài toán trở thành: Trong các nghiệm của hệ bất phương trình \(\left( * \right)\), tìm nghiệm \[({x_0};{y_0})\] sao cho \[L\left( {x;y} \right) = 2x + y\] lớn nhất.

Một xưởng có máy cắt và máy tiện dùng để sản xuất trục sắt và đinh ốc. Sản xuất 1 tấn trục sắt thì lần lượt máy cắt chạy trong 3 giờ và máy tiện chạy trong 1 giờ, tiền lãi là 2 triệu. (ảnh 2)

Miền nghiệm của \((*)\) là tứ giác \(OABC\)như hình vẽ với \(O(0;0),A(2;0),B(1;3),C(0;4)\).

Ta có: \(L(0;0) = 0,L(2;0) = 4,L(1,3) = 5,L(0,4) = 4\).

Suy ra: GTLN của \(L\left( {x;y} \right)\) bằng \(5\) khi \(\left( {x;y} \right) = \left( {1;3} \right)\)

Vậy một ngày xưởng nên sản xuất 1 tấn trục sắt và 3 tấn đinh ốc để tiền lãi cao nhất.

Khi đó \(a = 1,\;b = 3\;\)nên \(a + 3b = 10\).

Lời giải

Gọi số xe máy loại \(A\) và \(B\) cần đầu tư lần lượt là \(x\) và \(y\) (\(x,y \in \mathbb{N}\)).

Do tổng số vốn ban đầu không vượt quá \(4,8\) tỉ đồng nên ta có \(\)40\cdot 10^6x+60\cdot 10^6y\leq 4{,}8\cdot 10^9\Leftrightarrow 2x+3y\leq 240.\(\)

Vì tổng nhu cầu hàng tháng sẽ không vượt quá \(90\) chiếc cả hai loại nên \(x + y \le 90\).

Lợi nhuận thu được là \(F = 8 \cdot {10^6}x + 10 \cdot {10^6}y = 2 \cdot {10^6} \cdot (4x + 5y)\).

Ta có hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x + y \le 90}\\{2x + 3y \le 240}\\{x \ge 0}\\{y \ge 0.}\end{array}} \right.\)

Một đại lý xe máy có kế hoạch nhập về hai dòng xe máy A và B, giá mỗi chiếc lần lượt là 40 triệu đồng và 60 triệu đồng với số vốn ban đầu không vượt quá 4,8 tỉ đồng. (ảnh 1)

Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\) kể cả các cạnh của tứ giác.

Tại \(O\) ta có \(F = 2 \cdot {10^6}(4 \cdot 0 + 5 \cdot 0) = 0\).

Tại \(A(90;0)\) ta có \(F = 2 \cdot {10^6}(4 \cdot 90 + 5 \cdot 0) = 720 \cdot {10^6}\).

Tại \(B(30;60)\) ta có \(F = 2 \cdot {10^6}(4 \cdot 30 + 5 \cdot 60) = 840 \cdot {10^6}\).

Tại \(C(0;80)\) ta có \(F = 2 \cdot {10^6}(4 \cdot 0 + 5 \cdot 80) = 800 \cdot {10^6}\).

\(F\)đạt giá trị lớn nhất khi \(x = 30\) và \(y = 60\).

Vậy cần đầu tư kinh doanh loại \(A\) là \(30\) chiếc và loại \(B\) là \(60\) chiếc để thu được lợi nhuận lớn nhất.

Suy ra \(a = 30\) và \(b = 60\), \(a \cdot b = 1800\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{2a}}{3}\).

B. \(\frac{{a\sqrt {17} }}{3}\) 
C. \(\frac{{2a\sqrt 2 }}{3}\). 
D. \(\frac{{a\sqrt 5 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP