Câu hỏi:

28/10/2025 224 Lưu

Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (\(AB = 4,3\)cm;\(BC = 3,7\)cm; \(CA = 7,5\) cm). Tính bán kính của chiếc đĩa. (làm tròn kết quả đến hàng phần trăm)
Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ AB = 4,3cm;BC = 3,7cm; CA = 7,5 cm. Tính bán kính của chiếc đĩa (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời

5

,

7

4

 Bán kính \[R\] của chiếc đĩa bằng bán kính đường tròn ngoại tiếp tam giác\[ABC\].

Nửa chu vi của tam giác \[ABC\] là: \[p = \frac{{AB + BC + CA}}{2} = \frac{{4,3 + 3,7 + 7,5}}{2} = \frac{{31}}{4}\]cm.

Diện tích tam giác \[ABC\] là: \[S = \sqrt {p\left( {p - AB} \right)\left( {p - BC} \right)\left( {p - CA} \right)}  \approx 5,2\]cm2.

Mà \[S = \frac{{AB.BC.CA}}{{4R}} \Rightarrow R = \frac{{AB.BC.CA}}{{4S}} \approx 5,74\]cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời

1

0

 

 

 Gọi là số tấn trục sắt và đinh ốc sản xuất trong ngày.

Số tiền lãi mỗi ngày: \(L(x,y) = 2x + y\) (triệu đồng).

Số giờ làm việc mỗi ngày của máy cắt: \[3x + y\] (giờ).

Số giờ làm việc mỗi ngày của máy tiện: \(x + y\) (giờ).

Ta có hệ phương trình: \(\left\{ \begin{array}{l}3x + y \le 6\\x + y \le 4\\x \ge 0\\y \ge 0\end{array} \right.\,\)

Bài toán trở thành: Trong các nghiệm của hệ bất phương trình \(\left( * \right)\), tìm nghiệm \[({x_0};{y_0})\] sao cho \[L\left( {x;y} \right) = 2x + y\] lớn nhất.

Một xưởng có máy cắt và máy tiện dùng để sản xuất trục sắt và đinh ốc. Sản xuất 1 tấn trục sắt thì lần lượt máy cắt chạy trong 3 giờ và máy tiện chạy trong 1 giờ, tiền lãi là 2 triệu. (ảnh 2)

Miền nghiệm của \((*)\) là tứ giác \(OABC\)như hình vẽ với \(O(0;0),A(2;0),B(1;3),C(0;4)\).

Ta có: \(L(0;0) = 0,L(2;0) = 4,L(1,3) = 5,L(0,4) = 4\).

Suy ra: GTLN của \(L\left( {x;y} \right)\) bằng \(5\) khi \(\left( {x;y} \right) = \left( {1;3} \right)\)

Vậy một ngày xưởng nên sản xuất 1 tấn trục sắt và 3 tấn đinh ốc để tiền lãi cao nhất.

Khi đó \(a = 1,\;b = 3\;\)nên \(a + 3b = 10\).

Lời giải

Chọn B

Đường thẳng trong hình vẽ là \[ - 3x + 2y = 2\].

Gốc tọa độ \[O\left( {0;0} \right)\] không thuộc miền nghiệm nên ta chọn đáp án \[C\].

Câu 5

A. \(\frac{{2a}}{3}\).

B. \(\frac{{a\sqrt {17} }}{3}\) 
C. \(\frac{{2a\sqrt 2 }}{3}\). 
D. \(\frac{{a\sqrt 5 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP