PHẦN III. Câu trắc nghiệm trả lời ngắn.Thí sinh trả lời câu 1 đến câu 6.
Lớp 10A có 45 học sinh trong đó có 25 em học giỏi môn Toán, 23 em học giỏi môn Lý, 20 em học giỏi môn Hóa, 11 em học giỏi cả môn Toán và môn Lý, 8 em học giỏi cả môn Lý và môn Hóa, 9 em học giỏi cả môn Toán và môn Hóa. Hỏi lớp 10A có bao nhiêu bạn học giỏi cả ba môn Toán, Lý, Hóa (biết rằng mỗi học sinh trong lớp học giỏi ít nhất một trong ba môn Toán, Lý, Hóa).
                                    
                                                                                                                        PHẦN III. Câu trắc nghiệm trả lời ngắn.Thí sinh trả lời câu 1 đến câu 6.
Lớp 10A có 45 học sinh trong đó có 25 em học giỏi môn Toán, 23 em học giỏi môn Lý, 20 em học giỏi môn Hóa, 11 em học giỏi cả môn Toán và môn Lý, 8 em học giỏi cả môn Lý và môn Hóa, 9 em học giỏi cả môn Toán và môn Hóa. Hỏi lớp 10A có bao nhiêu bạn học giỏi cả ba môn Toán, Lý, Hóa (biết rằng mỗi học sinh trong lớp học giỏi ít nhất một trong ba môn Toán, Lý, Hóa).
Quảng cáo
Trả lời:
Trả lời: 5
Gọi T, L, H lần lượt là tập hợp các học sinh giỏi môn Toán, Lý, Hóa.
Ta có \(\left| {T \cup L \cup H} \right| = \left| T \right| + \left| L \right| + \left| H \right| - \left| {T \cap L} \right| - \left| {L \cap H} \right| - \left| {H \cap T} \right| + \left| {T \cap L \cap H} \right|\)
\( \Leftrightarrow 45 = 25 + 23 + 20 - 11 - 8 - 9 + \left| {T \cap L \cap H} \right| \Leftrightarrow \left| {T \cap L \cap H} \right| = 5\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
 - Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
 - Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
 - Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
 
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S, b) S, c) Đ, d) S
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Ta thay \(x = - 1;y = 2\) vào bất phương trình đầu tiên của hệ ta thấy không thỏa mãn nên (−1; 2) không là nghiệm của hệ bất phương trình trên.
c) Miền nghiệm của hệ bất phương trên là miền tam giác ABC có tọa độ các đỉnh \(A\left( {2;0} \right),C\left( {2;3} \right),B\left( {1;4} \right)\) bao gồm cả các cạnh như hình vẽ.
d) Ta có \(F\left( {2;0} \right) = 2 - 2.0 = 2\); \(F\left( {2;3} \right) = 2 - 2.3 = - 4\); \(F\left( {1;4} \right) = 1 - 2.4 = - 7\).
Vậy giá trị nhỏ nhất của biểu thức là −7.
Lời giải
Trả lời: 17,3
 
Vì \(\Delta AHB\) vuông tại \(H\) nên \(AB = \sqrt {A{H^2} + H{B^2}} = \sqrt {16 + 400} = 4\sqrt {26} \).
Xét \(\Delta AHB\) vuông tại H, ta có \(\sin \widehat {HAB} = \frac{{HB}}{{AB}} = \frac{{20}}{{4\sqrt {26} }} \Rightarrow \widehat {HAB} \approx 78^\circ 41'\).
Suy ra \(\widehat {ABC} = 78^\circ 41'\) (so le trong).
Mà \(\widehat {BAC} = 45^\circ \) nên \(\widehat {ACB} = 56^\circ 19'\).
Áp dụng định lí sin trong tam giác ABC, có
\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}}\)\( \Rightarrow BC = \frac{{AB.\sin A}}{{\sin C}} = \frac{{4\sqrt {26} .\sin 45^\circ }}{{\sin 56^\circ 19'}} \approx 17,3\) m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
