Hai tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc \(60^\circ \). Tàu thứ nhất chạy với tốc độ 20 km/h, tàu thứ hai chạy với tốc độ 30 km/h. Hỏi sau 3 giờ hai tàu cách nhau bao nhiêu km? (làm tròn kết quả đến hàng phần mười).
Quảng cáo
Trả lời:
Trả lời: 79,4

\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos \widehat A\)
Sau 3 giờ, tàu 1 đi được quãng đường là \(AB = 20.3 = 60\) (km).
Sau 3 giờ, tàu 2 đi được quãng đường là \(AC = 30.3 = 90\) (km).
Có
\(B{C^2} = {60^2} + {90^2} - 2.60.90.\cos 60^\circ = 6300\)\( \Rightarrow BC \approx 79,4\).
Vậy sau 3 giờ hai tàu cách nhau khoảng 79,4 km.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S, b) S, c) Đ, d) S
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Ta thay \(x = - 1;y = 2\) vào bất phương trình đầu tiên của hệ ta thấy không thỏa mãn nên (−1; 2) không là nghiệm của hệ bất phương trình trên.
c) Miền nghiệm của hệ bất phương trên là miền tam giác ABC có tọa độ các đỉnh \(A\left( {2;0} \right),C\left( {2;3} \right),B\left( {1;4} \right)\) bao gồm cả các cạnh như hình vẽ.
d) Ta có \(F\left( {2;0} \right) = 2 - 2.0 = 2\); \(F\left( {2;3} \right) = 2 - 2.3 = - 4\); \(F\left( {1;4} \right) = 1 - 2.4 = - 7\).
Vậy giá trị nhỏ nhất của biểu thức là −7.
Lời giải
Trả lời: 17,3

Vì \(\Delta AHB\) vuông tại \(H\) nên \(AB = \sqrt {A{H^2} + H{B^2}} = \sqrt {16 + 400} = 4\sqrt {26} \).
Xét \(\Delta AHB\) vuông tại H, ta có \(\sin \widehat {HAB} = \frac{{HB}}{{AB}} = \frac{{20}}{{4\sqrt {26} }} \Rightarrow \widehat {HAB} \approx 78^\circ 41'\).
Suy ra \(\widehat {ABC} = 78^\circ 41'\) (so le trong).
Mà \(\widehat {BAC} = 45^\circ \) nên \(\widehat {ACB} = 56^\circ 19'\).
Áp dụng định lí sin trong tam giác ABC, có
\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}}\)\( \Rightarrow BC = \frac{{AB.\sin A}}{{\sin C}} = \frac{{4\sqrt {26} .\sin 45^\circ }}{{\sin 56^\circ 19'}} \approx 17,3\) m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
