Câu hỏi:

30/10/2025 42 Lưu

Miền không gạch chéo của hình bên dưới là miền nghiệm của hệ bất phương trình nào?

Miền không gạch chéo của hình bên dưới là miền nghiệm của hệ bất phương trình nào? (ảnh 1)

A. \(\left\{ \begin{array}{l}x - 2y \ge  - 2\\7x - 4y \le 16\\2x + y \ge  - 4\end{array} \right.\). 

B. \(\left\{ \begin{array}{l}x - 2y \ge  - 2\\7x - 4y \le 16\\2x + y \ge 4\end{array} \right.\).

C. \(\left\{ \begin{array}{l}x - 2y \ge 2\\7x - 4y \le 16\\2x + y \ge  - 4\end{array} \right.\).                                                                
D. \(\left\{ \begin{array}{l}x - 2y \ge  - 2\\7x - 4y \le  - 16\\2x + y \ge  - 4\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Dựa vào hình vẽ, ta có phương trình đường thẳng \({d_1}:x - 2y =  - 2\); \({d_2}:7x - 4y = 16\); \({d_3}:2x + y =  - 4\).

Do tọa độ điểm \(O\left( {0;0} \right)\) thỏa mãn các bất phương trình \(x - 2y \ge  - 2;7x - 4y \le 16;2x + y \ge  - 4\).

Nên phần không gạch là miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x - 2y \ge  - 2\\7x - 4y \le 16\\2x + y \ge  - 4\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 8

Ta có \({C_\mathbb{R}}A = \left[ {m; + \infty } \right)\).

Để \(\left( {{C_\mathbb{R}}A} \right) \cap B \ne \emptyset \) \( \Leftrightarrow 2m + 2 \ge m \Leftrightarrow m \ge  - 2\).

Mà \(m < 6\) nên \(m \in \left\{ { - 2; - 1;0;1;2;3;4;5} \right\}\).

Vậy có 8 giá trị của \(m\).

Lời giải

a) S, b) Đ, c) S, d) S

a) \(S = pr\).

b) Ta có \(\sin A = \sqrt {1 - {{\cos }^2}A}  = \sqrt {1 - {{\left( {\frac{3}{5}} \right)}^2}}  = \frac{4}{5}\).

\(S = \frac{1}{2}bc\sin A = \frac{1}{2}.7.5.\frac{4}{5} = 14\).

c) \({a^2} = {b^2} + {c^2} - 2bc\cos A = {7^2} + {5^2} - 2.7.5.\frac{3}{5} = 32\). Suy ra \(a = 4\sqrt 2 \).

d) Có \(p = \frac{{a + b + c}}{2} = \frac{{7 + 5 + 4\sqrt 2 }}{2} = 6 + 2\sqrt 2 \).

Mà \(S = pr\)\( \Rightarrow r = \frac{S}{p} = \frac{{14}}{{6 + 2\sqrt 2 }} = 3 - \sqrt 2 \).

Câu 4

A. \(\frac{{\sqrt 5 }}{2}\).  

B. \( - \frac{{\sqrt 5 }}{2}\).  
C. \(\frac{2}{{\sqrt 5 }}\). 
D. \( - \frac{2}{{\sqrt 5 }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {0;0} \right)\). 

B. \(\left( {1;1} \right)\). 
C. \(\left( { - 1;1} \right)\).  
D. \(\left( { - 1; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(S = \frac{{abc}}{{4r}}\).  

B. \(r = \frac{{2S}}{{a + b + c}}\).

C. \({a^2} = {b^2} + {c^2} + 2bc\cos A\).  
D. \(S = r\left( {a + b + c} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP