Câu hỏi:

30/10/2025 42 Lưu

Bác An cần đo khoảng cách từ một địa điểm A trên bờ hồ đến một địa điểm B ở giữa hồ. Bác sử dụng giác kế để chọn một điểm C cùng nằm trên bờ với A sao cho \(\widehat {BAC} = 45^\circ ,\widehat {ACB} = 85^\circ \) và \(AC = 60{\rm{m}}\). Hỏi khoảng cách AB bằng bao nhiêu mét (làm tròn kết quả đến hàng phần trăm)?
Hỏi khoảng cách AB bằng bao nhiêu mét (làm tròn kết quả đến hàng phần trăm)? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 78,03

Có \(\widehat {ABC} = 180^\circ  - \left( {\widehat {BAC} + \widehat {ACB}} \right) = 180^\circ  - \left( {45^\circ  + 85^\circ } \right) = 50^\circ \).

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\)\( \Rightarrow AB = \frac{{AC}}{{\sin B}}.\sin C = \frac{{60}}{{\sin 50^\circ }}.\sin 85^\circ  \approx 78,03\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) S, b) Đ, c) S, d) S

a) \(S = pr\).

b) Ta có \(\sin A = \sqrt {1 - {{\cos }^2}A}  = \sqrt {1 - {{\left( {\frac{3}{5}} \right)}^2}}  = \frac{4}{5}\).

\(S = \frac{1}{2}bc\sin A = \frac{1}{2}.7.5.\frac{4}{5} = 14\).

c) \({a^2} = {b^2} + {c^2} - 2bc\cos A = {7^2} + {5^2} - 2.7.5.\frac{3}{5} = 32\). Suy ra \(a = 4\sqrt 2 \).

d) Có \(p = \frac{{a + b + c}}{2} = \frac{{7 + 5 + 4\sqrt 2 }}{2} = 6 + 2\sqrt 2 \).

Mà \(S = pr\)\( \Rightarrow r = \frac{S}{p} = \frac{{14}}{{6 + 2\sqrt 2 }} = 3 - \sqrt 2 \).

Lời giải

Trả lời: 8

Ta có \({C_\mathbb{R}}A = \left[ {m; + \infty } \right)\).

Để \(\left( {{C_\mathbb{R}}A} \right) \cap B \ne \emptyset \) \( \Leftrightarrow 2m + 2 \ge m \Leftrightarrow m \ge  - 2\).

Mà \(m < 6\) nên \(m \in \left\{ { - 2; - 1;0;1;2;3;4;5} \right\}\).

Vậy có 8 giá trị của \(m\).

Câu 3

A. \(\frac{{\sqrt 5 }}{2}\).  

B. \( - \frac{{\sqrt 5 }}{2}\).  
C. \(\frac{2}{{\sqrt 5 }}\). 
D. \( - \frac{2}{{\sqrt 5 }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {0;0} \right)\). 

B. \(\left( {1;1} \right)\). 
C. \(\left( { - 1;1} \right)\).  
D. \(\left( { - 1; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP