Cho tam giác \(ABC\) có \(G\) là trọng tâm. Gọi \(D\) là điểm đối xứng của \(B\) qua \(G,M\) là trung điểm của \(BC\). Khi đó:
a) \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} \).
b) \(\overrightarrow {AG} = 2\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
c) \(\overrightarrow {CD} = \overrightarrow {AB} - \overrightarrow {AC} + \frac{1}{3}\overrightarrow {BN} \).
d) \(\overrightarrow {MD} = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)
Cho tam giác \(ABC\) có \(G\) là trọng tâm. Gọi \(D\) là điểm đối xứng của \(B\) qua \(G,M\) là trung điểm của \(BC\). Khi đó:
a) \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} \).
b) \(\overrightarrow {AG} = 2\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
c) \(\overrightarrow {CD} = \overrightarrow {AB} - \overrightarrow {AC} + \frac{1}{3}\overrightarrow {BN} \).
d) \(\overrightarrow {MD} = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) Đ

a) \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} \).
b) Ta có: \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) = \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
c) Ta có: \(\overrightarrow {CD} = \overrightarrow {CB} + \overrightarrow {BD} = \overrightarrow {AB} - \overrightarrow {AC} + \frac{4}{3}\overrightarrow {BN} \).
d) Ta có: \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} = - \frac{1}{3}\overrightarrow {AM} + \frac{2}{3}\overrightarrow {BN} = - \frac{1}{3} \cdot \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) + \frac{2}{3}(\overrightarrow {BA} + \overrightarrow {AN} )\)
\( = - \frac{1}{6}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} + \frac{2}{3} \cdot \frac{1}{2}\overrightarrow {AC} = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(E\left( { - 9;4} \right)\).
Lời giải
Đáp án đúng là: C
Vì \(E\) đối xứng với \(A\) qua \(B\) nên \(B\) trung điểm của \(AE\).
Do đó \(\left\{ \begin{array}{l}{x_E} = 2{x_B} - {x_A}\\{y_E} = 2{y_B} - {y_A}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_E} = 2.5 + 2 = 12\\{y_E} = 2.\left( { - 4} \right) - 0 = - 8\end{array} \right.\). Suy ra \(E\left( {12; - 8} \right)\).
Câu 2
A. \(A \cap B = \left( {2;3} \right)\).
Lời giải
Đáp án đúng là: C
\(B\backslash A = \left[ {3;5} \right]\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(0,0028912\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
