Câu hỏi:

03/11/2025 20 Lưu

Cho tam giác \(ABC\) có \(AB = 5,AC = 8,\hat A = 60^\circ \). Tính bán kính \(R\) của đường tròn ngoại tiếp tam giác \(ABC\) (kết quả làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 4,04

Áp dụng định lí côsin, ta có:

\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC \cdot \cos A = {5^2} + {8^2} - 2 \cdot 5 \cdot 8 \cdot \cos 60^\circ  = 49\\ \Rightarrow BC = 7.{\rm{ }}\end{array}\)

Ta có \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{7}{{2\sin 60^\circ }} = \frac{{7\sqrt 3 }}{3} \approx 4,04\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(A \cap B = \left( {2;3} \right)\).  

B. \(A \cup B = \left[ { - 1;5} \right]\).
C. \(B\backslash A = \left( {3;5} \right]\).  
D. \(A\backslash B = \left[ { - 1;2} \right]\).

Lời giải

Đáp án đúng là: C

\(B\backslash A = \left[ {3;5} \right]\).

Lời giải

a) Đ, b) S, c) S, d) Đ

Cho tam giác ABC có G là trọng tâm. Gọi D là điểm đối xứng của B qua G,M là trung điểm của BC. Khi đó:  a) vec MD = vec MG + vec GD. (ảnh 1)

a) \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD} \).

b) Ta có: \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AM}  = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) = \frac{1}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} \).

c) Ta có: \(\overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {BD}  = \overrightarrow {AB}  - \overrightarrow {AC}  + \frac{4}{3}\overrightarrow {BN} \).

d) Ta có: \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD}  =  - \frac{1}{3}\overrightarrow {AM}  + \frac{2}{3}\overrightarrow {BN}  =  - \frac{1}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) + \frac{2}{3}(\overrightarrow {BA}  + \overrightarrow {AN} )\)

\( =  - \frac{1}{6}\overrightarrow {AB}  - \frac{1}{6}\overrightarrow {AC}  - \frac{2}{3}\overrightarrow {AB}  + \frac{2}{3} \cdot \frac{1}{2}\overrightarrow {AC}  =  - \frac{5}{6}\overrightarrow {AB}  + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)