Một công ty điện tử sản xuất hai kiểu radio trên hai dây chuyền độc lập. Radio kiểu một sản xuất trên dây chuyền một với công suất 45 radio/ngày, radio kiểu hai sản xuất trên dây chuyền hai với công suất 80 radio/ngày. Để sản xuất một chiếc radio kiểu một cần 12 linh kiện, để sản xuất một chiếc radio kiểu hai cần 9 linh kiện. Tiền lãi thu được khi bán một chiếc radio kiểu một là 250 000 đồng, lãi thu được khi bán một chiếc radio kiểu hai là 180 000 đồng. Biết rằng số linh kiện có thể sử dụng tối đa trong một ngày là 900. Gọi \({x_0};{y_0}\) lần lượt là số radio kiểu một và radio kiểu hai sản xuất được trong một ngày để tiền lãi thu được là nhiều nhất. Tính tổng \(T = {x_0} + 2{y_0}\).
Quảng cáo
Trả lời:
Trả lời: 125.
Gọi \(x;y\) lần lượt là số radio kiểu 1 và kiểu hai sản xuất được trong 1 ngày.
Ta có \(0 \le x \le 45;0 \le y \le 80\).
Số linh kiện cần để sản xuất \(x\)radio kiểu 1 là \(12x\), số linh kiện cần để sản xuất \(y\)radio kiểu 2 là \(9y\).
Tổng số linh kiện là: \(12x + 9y\).
Theo đề ta có: \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\12x + 9y \le 900\end{array} \right.\) (I).
Số tiền lãi thu được là \(F\left( {x;y} \right) = 250000x + 180000y\).
Bài toán trở thành tìm \(x,y\) là nghiệm của hệ bất phương trình (I) để \(F\left( {x;y} \right) = 250000x + 180000y\) đạt giá trị lớn nhất.
Miền nghiệm của hệ bất phương trình (I) là ngũ giác OABCD (miền tô màu) như hình vẽ.
Khi đó \(F\left( {x;y} \right)\) đạt giá trị lớn nhất khi \(\left( {x;y} \right)\) là một trong các điểm sau:
\(O\left( {0;0} \right),A\left( {0;80} \right),B\left( {15;80} \right),C\left( {45;40} \right),D\left( {45;0} \right)\).
Có \(F\left( {0;0} \right) = 0;\)\(F\left( {0;80} \right) = 250000.0 + 180000.80 = 14400000\);
\(F\left( {15;80} \right) = 250000.15 + 180000.80 = 18150000\); \(F\left( {45;40} \right) = 250000.45 + 180000.40 = 18450000\);
\(F\left( {45;0} \right) = 250000.45 + 180000.0 = 11250000\).
Tiền lãi thu được nhiều nhất là \(18450000\) đồng khi \({x_0} = 45;{y_0} = 40\).
\(T = {x_0} + 2{y_0} = 45 + 2.40 = 125\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) Đ, c) S, d) S.
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Thay \(x = 3;y = 2\) vào vế trái của các bất phương trình của hệ ta thấy đều thỏa mãn. Do đó, (3; 2) là một nghiệm của hệ bất phương trình.
c) Miền nghiệm của hệ là tứ giác ABCD (phần tô mầu) như hình vẽ.
d) Ta có \(A\left( {1;3} \right),B\left( {1;5} \right),C\left( {5;1} \right),D\left( {3;0} \right)\).
Ta có \(F\left( {1;3} \right) = 3.1 - 3 = 0\); \(F\left( {1;5} \right) = 3.1 - 5 = - 2\); \(F\left( {5;1} \right) = 3.5 - 1 = 14\); \(F\left( {3;0} \right) = 3.3 - 0 = 9\).
Vậy giá trị lớn nhất của \(F = 3x - y\) là 14 khi \(x = 5;y = 1\).
Lời giải
Trả lời: 1
Gọi A, B, C lần lượt là tập hợp học sinh chọn nhóm ngành Giáo dục, Y tế, Công nghệ thông tin.
Khi đó \(A \cup B \cup C\) là tập hợp các học sinh chọn ít nhất một trong ba nhóm ngành trên.
Do lớp có 40 học sinh và 22 học sinh không chọn nhóm ngành trong ba nhóm ngành trên nên số học sinh chọn ít nhất một trong ba nhóm ngành trên là 40 – 22 = 18.
Ta có \(n\left( A \right) = 6,n\left( B \right) = 9,n\left( C \right) = 10,n\left( {A \cup B \cup C} \right) = 18\);
\(n\left( {A \cap B} \right) = 3;n\left( {B \cap C} \right) = 2;n\left( {A \cap C} \right) = 3\).
Ta có \(n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {B \cap C} \right) - n\left( {A \cap B} \right) - n\left( {A \cap C} \right) + n\left( {A \cap B \cap C} \right)\).
Số học sinh chọn cả ba nhóm ngành trên là:
\(n\left( {A \cap B \cap C} \right) = n\left( {A \cup B \cup C} \right) - n\left( A \right) - n\left( B \right) - n\left( C \right) + n\left( {B \cap C} \right) + n\left( {A \cap B} \right) + n\left( {A \cap C} \right)\)
\(n\left( {A \cap B \cap C} \right) = 18 + 3 + 2 + 3 - 6 - 9 - 10 = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(3x + 2y \ge 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left( {0;3} \right).\)
B. \(\left[ { - 1;3} \right].\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\cos \alpha < 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(S = 10\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
