Câu hỏi:

04/11/2025 6 Lưu

Một người quan sát đỉnh của một ngọn núi nhân tạo từ hai vị trí khác nhau của tòa nhà. Lần đầu tiên người đó quan sát đỉnh núi từ tầng trệt với phương nhìn tạo với phương nằm ngang \[35^\circ \] và lần thứ hai người này quan sát tại sân thượng của cùng tòa nhà đó với phương nhìn tạo với phương nằm ngang \[15^\circ \] (như hình vẽ). Tính chiều cao ngọn núi biết rằng tòa nhà cao \[60\left( {\rm{m}} \right)\] (làm tròn đến hàng phần trăm).
Tính chiều cao ngọn núi biết rằng tòa nhà cao 60 m (làm tròn đến hàng phần trăm). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \[97,19\].

Ta có: \[\widehat {CBA} = \widehat {CBE} + \widehat {EBA} = 90^\circ  + 15^\circ  = 105^\circ \]

\[\widehat {BAC} = \widehat {BAD} - \widehat {CAD} = 90^\circ  - 35^\circ  = 55^\circ \]\[ \Rightarrow \widehat {BCA} = 180^\circ  - \left( {\widehat {CBA} + \widehat {BAC}} \right) = 20^\circ \].

Áp dụng định lý hàm \[\sin \] cho \[\Delta CBA\] ta có

\[\frac{{AB}}{{\sin \left( {\widehat {BCA}} \right)}} = \frac{{AC}}{{\sin \left( {\widehat {CBA}} \right)}} \Rightarrow AC = \frac{{AB.\sin \left( {\widehat {CBA}} \right)}}{{\sin \left( {\widehat {BCA}} \right)}} = \frac{{60.\sin 105^\circ }}{{\sin 20^\circ }} = 169,4506909\left( {\rm{m}} \right)\].

Xét \[\Delta CAD\] vuông tại \[D\], ta có \[CD = AC.\sin \left( {\widehat {CAD}} \right) \approx 97,19\left( {\rm{m}} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) Đ, c) S, d) S.

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay \(x = 3;y = 2\) vào vế trái của các bất phương trình của hệ ta thấy đều thỏa mãn. Do đó, (3; 2) là một nghiệm của hệ bất phương trình.

c) Miền nghiệm của hệ là tứ giác ABCD (phần tô mầu) như hình vẽ.

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.  b) (3; 2) là một nghiệm của hệ bất phương trình. (ảnh 1)

d) Ta có \(A\left( {1;3} \right),B\left( {1;5} \right),C\left( {5;1} \right),D\left( {3;0} \right)\).

Ta có \(F\left( {1;3} \right) = 3.1 - 3 = 0\); \(F\left( {1;5} \right) = 3.1 - 5 =  - 2\); \(F\left( {5;1} \right) = 3.5 - 1 = 14\); \(F\left( {3;0} \right) = 3.3 - 0 = 9\).

Vậy giá trị lớn nhất của \(F = 3x - y\) là 14 khi \(x = 5;y = 1\).

Lời giải

Trả lời: 1

Gọi A, B, C lần lượt là tập hợp học sinh chọn nhóm ngành Giáo dục, Y tế, Công nghệ thông tin.

Khi đó \(A \cup B \cup C\) là tập hợp các học sinh chọn ít nhất một trong ba nhóm ngành trên.

Do lớp có 40 học sinh và 22 học sinh không chọn nhóm ngành trong ba nhóm ngành trên nên số học sinh chọn ít nhất một trong ba nhóm ngành trên là 40 – 22 = 18.

Ta có \(n\left( A \right) = 6,n\left( B \right) = 9,n\left( C \right) = 10,n\left( {A \cup B \cup C} \right) = 18\);

\(n\left( {A \cap B} \right) = 3;n\left( {B \cap C} \right) = 2;n\left( {A \cap C} \right) = 3\).

Ta có \(n\left( {A \cup B \cup C} \right) = n\left( A \right) + n\left( B \right) + n\left( C \right) - n\left( {B \cap C} \right) - n\left( {A \cap B} \right) - n\left( {A \cap C} \right) + n\left( {A \cap B \cap C} \right)\).

Số học sinh chọn cả ba nhóm ngành trên là:

\(n\left( {A \cap B \cap C} \right) = n\left( {A \cup B \cup C} \right) - n\left( A \right) - n\left( B \right) - n\left( C \right) + n\left( {B \cap C} \right) + n\left( {A \cap B} \right) + n\left( {A \cap C} \right)\)

\(n\left( {A \cap B \cap C} \right) = 18 + 3 + 2 + 3 - 6 - 9 - 10 = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {0;3} \right).\) 

B. \(\left[ { - 1;3} \right].\)                               

 

C. \(\left( { - \infty ; - 1} \right) \cup \left( {3; + \infty } \right).\)
D. \(\left( { - 1;3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(S = 10\).  

B. \(S = 10\sqrt 3 \).  
C. \(S = 5\).   
D. \(S = 5\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(3x + 2y \ge 0.\)  

B. \({x^2} + {y^2} < 2.\)  
C. \(2{x^2} + 3y > 0.\)   
D. \(x + {y^2} \ge 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\cos \alpha  < 0\).  

B. \(\cot \alpha  > 0\).
C. \(\sin \alpha  < 0\).   
D. \(\tan \alpha  > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP