Câu hỏi:

04/11/2025 83 Lưu

Cho đường thẳng \(a \subset \left( \alpha \right)\). Giả sử đường thẳng \(b\) không nằm trong \(\left( \alpha \right)\). Khẳng định nào sau đây là đúng?        

A. Nếu \[b\,{\rm{//}}\,\left( \alpha \right)\] thì \(b\,{\rm{//}}\,a\);        
B. Nếu \(b\) cắt \(\left( \alpha \right)\) thì \(b\) cắt \(a\);       
C. Nếu \(b\,{\rm{//}}\,a\) thì \(b\,{\rm{//}}\,\left( \alpha \right)\);        
D. Nếu \(b\) cắt \(\left( \alpha \right)\)\(\left( \beta \right)\) chứa \(b\) thì giao tuyến của \(\left( \alpha \right)\)\(\left( \beta \right)\) là đường thẳng cắt cả \(a\)\(b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Phương án A sai vì nếu \(b\,{\rm{//}}\,\left( \alpha \right)\) thì \(b\,{\rm{//}}\,a\) hoặc \(a,b\) chéo nhau.

Phương án B sai vì nếu \(b\) cắt \(\left( \alpha \right)\) thì \(b\) cắt \(a\) hoặc \(a,b\) chéo nhau.

Phương án D sai vì nếu \(b\) cắt \(\left( \alpha \right)\)\(\left( \beta \right)\) chứa \(b\) thì giao tuyến của \(\left( \alpha \right)\)\(\left( \beta \right)\) là đường thẳng cắt \(a\) hoặc song song với \(a\).

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. “\(\forall x \in \mathbb{Z}|x\,\, \vdots \,\,2\)”;  
B. “\(\forall x \in \mathbb{R}|x\,\, \vdots \,\,2\)”;
C. “\(\exists x \in \mathbb{Z}|x\,\, \vdots \,\,2\)”;  
D. “\(\exists x \in \mathbb{R}|x\,\, \vdots \,\,2\)”.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Biểu diễn mệnh đề “Tồn tại số thực \(x\) để \(x\) chia hết cho 2” dưới dạng kí hiệu là

 \(\exists x \in \mathbb{R}|x\,\, \vdots \,\,2\)”.

Câu 2

A. \[\frac{a}{{\sqrt 3 }}\];                               
B. \[\frac{{3a}}{{\sqrt 3 }}\];                              
C. \[\frac{{5a}}{{\sqrt 3 }}\];                              
D. \[\frac{{7a}}{{\sqrt 3 }}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Diện tích tam giác \[ABC\] đều là:

\[S = AB.AC.sinA = \frac{1}{2}.2a.2a.sin60^\circ = {a^2}\sqrt 3 \]

Nửa chu vi tam giác \[ABC\] là:

\[p = \frac{{2a + 2a + 2a}}{2} = 3a\]

Bán kính đường tròn nội tiếp tam giác \[ABC\] là:

\[r = \frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{{3a}} = \frac{a}{{\sqrt 3 }}\].

Câu 3

A. \({a^2} = {b^2} + {c^2} - 2bc.\cos A\);      
B. \(b = \frac{{c.\sin B}}{{\sin C}}\);
C. \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) ;              
D. \(S = ab.\sin C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hà Nội là thủ đô của Việt Nam;
B. Hình chữ nhật có hai đường chéo vuông góc với nhau;
C. 2 là số nguyên tố;
D. Hôm nay là thứ mấy?.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. A¯:"x,x2x+7<0" ;                                                                     
B. A¯:"x,x2x+7>0" ;
C. A¯:"x,x2x+7>0" ;                                                                     
D. A¯:"x,x2 x+70" .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[ - 3x + 2y - 4 > 0\];                                            
B. \[x + 3y < 0\];
C. \[3x - y > 0\];                                                        
D. \[2x - y + 4 > 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP