Câu hỏi:

04/11/2025 213 Lưu

(1,0 điểm) Cho tứ diện \(ABCD\) và điểm \(M\) thuộc cạnh \(AB\). Gọi \(\left( \alpha \right)\) là mặt phẳng qua \(M\), song song với hai đường thẳng \(BC\)\(AD\). Gọi \(N,P,Q\) lần lượt là giao điểm của mặt phẳng \(\left( \alpha \right)\) với các cạnh \(AC,CD\)\(DB\).

a) Chứng minh \(MNPQ\) là hình bình hành.

b) Trong trường hợp nào thì \(MNPQ\) là hình thoi?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tứ diện \(ABCD\) và điểm \(M\) thuộc cạnh \(AB\). Gọi \(\left( \alpha  \right)\) là mặt phẳng qua \(M\), song song với hai đường thẳng \(BC\) và \(AD\). Gọi \(N,P,Q\) lần lượt là giao đi (ảnh 1)

a) \(\left( \alpha \right)\,{\rm{//}}\,BC,BC \subset \left( {ABC} \right)\)\(\left( \alpha \right)\) cắt \(\left( {ABC} \right)\) tại \(MN\) nên \(MN\,{\rm{//}}\,BC\).

\(\left( \alpha \right)\,{\rm{//}}\,BC,BC \subset \left( {BCD} \right)\)\(\left( \alpha \right)\) cắt \(\left( {BCD} \right)\) tại \(PQ\) nên \(PQ\,{\rm{//}}\,BC\).

Suy ra: \(MN\,{\rm{//}}\,PQ\).

\(\left( \alpha \right)\,{\rm{//}}\,AD,AD \subset \left( {ABD} \right)\)\(\left( \alpha \right)\) cắt \(\left( {ABD} \right)\) tại \(MQ\) nên \(MQ\,{\rm{//}}\,AD\).

\(\left( \alpha \right)\,{\rm{//}}\,AD,AD \subset \left( {ACD} \right)\)\(\left( \alpha \right)\) cá́t \(\left( {ACD} \right)\) tại \(NP\) nên \(NP\,{\rm{//}}\,BC\).

Suy ra: \(MQ\,{\rm{//}}\,NP\).

Do đó, \(MNPQ\) là hình bình hành.

b) \(MNPQ\) là hình thoi khi \(MN = NP\).

Ta có: \(\frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\)

\(\frac{{NP}}{{AD}} = \frac{{CN}}{{AC}}\) hay \({\rm{\;}}\frac{{MN}}{{AD}} = \frac{{CN}}{{AC}}\)

\(\frac{{AN}}{{AC}} + \frac{{CN}}{{AC}} = 1\) nên \(\frac{{MN}}{{BC}} + \frac{{MN}}{{AD}} = 1\)

Suy ra: \(MN = \frac{{AD.BC}}{{AD + BC}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. “\(\forall x \in \mathbb{Z}|x\,\, \vdots \,\,2\)”;  
B. “\(\forall x \in \mathbb{R}|x\,\, \vdots \,\,2\)”;
C. “\(\exists x \in \mathbb{Z}|x\,\, \vdots \,\,2\)”;  
D. “\(\exists x \in \mathbb{R}|x\,\, \vdots \,\,2\)”.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Biểu diễn mệnh đề “Tồn tại số thực \(x\) để \(x\) chia hết cho 2” dưới dạng kí hiệu là

 \(\exists x \in \mathbb{R}|x\,\, \vdots \,\,2\)”.

Câu 2

A. \[\frac{a}{{\sqrt 3 }}\];                               
B. \[\frac{{3a}}{{\sqrt 3 }}\];                              
C. \[\frac{{5a}}{{\sqrt 3 }}\];                              
D. \[\frac{{7a}}{{\sqrt 3 }}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Diện tích tam giác \[ABC\] đều là:

\[S = AB.AC.sinA = \frac{1}{2}.2a.2a.sin60^\circ = {a^2}\sqrt 3 \]

Nửa chu vi tam giác \[ABC\] là:

\[p = \frac{{2a + 2a + 2a}}{2} = 3a\]

Bán kính đường tròn nội tiếp tam giác \[ABC\] là:

\[r = \frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{{3a}} = \frac{a}{{\sqrt 3 }}\].

Câu 3

A. \({a^2} = {b^2} + {c^2} - 2bc.\cos A\);      
B. \(b = \frac{{c.\sin B}}{{\sin C}}\);
C. \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) ;              
D. \(S = ab.\sin C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hà Nội là thủ đô của Việt Nam;
B. Hình chữ nhật có hai đường chéo vuông góc với nhau;
C. 2 là số nguyên tố;
D. Hôm nay là thứ mấy?.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. A¯:"x,x2x+7<0" ;                                                                     
B. A¯:"x,x2x+7>0" ;
C. A¯:"x,x2x+7>0" ;                                                                     
D. A¯:"x,x2 x+70" .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[ - 3x + 2y - 4 > 0\];                                            
B. \[x + 3y < 0\];
C. \[3x - y > 0\];                                                        
D. \[2x - y + 4 > 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP