Câu hỏi:

05/11/2025 338 Lưu

Cho tứ diện\[ABCD\], \[M\] là trung điểm của\[AB\], \[N\] là điểm trên \[AC\]\[AN = \frac{1}{4}AC,\] \[P\] là điểm trên đoạn \[AD\]\[AP = \frac{2}{3}AD\]. Gọi \[E\] là giao điểm của \[MP\]\[BD\], \[F\] là giao điểm của \[MN\]\[BC\]. Khi đó giao tuyến của \[\left( {BCD} \right)\]\[\left( {CMP} \right)\]

A. \[CP\].                
B. \[NE\].               
C. \[MF\].                    
D. \[CE\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

Lời giải  Đáp án đúng là: D (ảnh 1)

Ta có \[C \in \left( {BCD} \right) \cap \left( {CMP} \right)\] \[\left( 1 \right)\].

Lại có \[BD \cap MP = E \Rightarrow \left\{ \begin{array}{l}E \in BD \Rightarrow E \in \left( {BCD} \right)\\E \in MP \Rightarrow E \in \left( {CMP} \right)\end{array} \right.\] \[\left( 2 \right)\].

Từ \[\left( 1 \right)\]\[\left( 2 \right)\]\[ \Rightarrow \left( {BCD} \right) \cap \left( {CMP} \right) = CE\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {MA} = \frac{1}{3}\overrightarrow {MB} \);                      
B. \(\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \);             
C. \(\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \);                       
D. \(\overrightarrow {MB} = - 3\overrightarrow {MA} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: B (ảnh 1)

\[AM = \frac{1}{4}AB\] và hai vectơ \(\overrightarrow {AM} ,\,\,\overrightarrow {AB} \) cùng hướng nên \(\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \), do đó đáp án B đúng.

Ta có: \[MA = \frac{1}{3}MB\] và hai vectơ \(\overrightarrow {MA} ,\,\,\overrightarrow {MB} \) ngược hướng nên \(\overrightarrow {MA} = - \frac{1}{3}\overrightarrow {MB} \) hay \(\overrightarrow {MB} = - 3\overrightarrow {MA} \), do đó đáp án A sai và đáp án D đúng.

\[BM = \frac{3}{4}BA\] và hai vectơ \(\overrightarrow {BM} ,\,\,\overrightarrow {BA} \) cùng hướng nên \(\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \), do đó đáp án C đúng.

Câu 2

A. \(\overrightarrow {IC} = - 2\overrightarrow {AB} + \overrightarrow {AC} \);                                 
B. \(\overrightarrow {IC} = 2\overrightarrow {AB} + \overrightarrow {AC} \);
C. \(\overrightarrow {IC} = - \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \);                                                                         
D. \(\overrightarrow {IC} = \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có \[\overrightarrow {IA} = - 2\overrightarrow {IB} \]\[ \Rightarrow \overrightarrow {IA} = - \frac{2}{3}\overrightarrow {AB} \].

Vậy \[\overrightarrow {IC} = \overrightarrow {IA} + \overrightarrow {AC} = - \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \].

Câu 3

A. \(2a\);                                  
B. \(a\sqrt 3 \);       
C. \(2a\sqrt 3 \);        
D. \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\overrightarrow {AB} + \overrightarrow {BC} - \overrightarrow {BD} = \overrightarrow 0 \];                                 
B. \[\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 \]; 
C. \[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \overrightarrow 0 \];                                 
D. \[\overrightarrow {AD} - \overrightarrow {BC} = \overrightarrow 0 \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[D = \left( {1;\, + \infty } \right)\];           
B. \[D = \left( {1;\,6} \right)\];          
C. \[D = \left[ {1;\,6} \right]\];                      
D. \[D = \mathbb{R}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP