Câu hỏi:

05/11/2025 44 Lưu

Cho tứ diện\[ABCD\], \[M\] là trung điểm của\[AB\], \[N\] là điểm trên \[AC\]\[AN = \frac{1}{4}AC,\] \[P\] là điểm trên đoạn \[AD\]\[AP = \frac{2}{3}AD\]. Gọi \[E\] là giao điểm của \[MP\]\[BD\], \[F\] là giao điểm của \[MN\]\[BC\]. Khi đó giao tuyến của \[\left( {BCD} \right)\]\[\left( {CMP} \right)\]

A. \[CP\].                
B. \[NE\].               
C. \[MF\].                    
D. \[CE\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

Lời giải  Đáp án đúng là: D (ảnh 1)

Ta có \[C \in \left( {BCD} \right) \cap \left( {CMP} \right)\] \[\left( 1 \right)\].

Lại có \[BD \cap MP = E \Rightarrow \left\{ \begin{array}{l}E \in BD \Rightarrow E \in \left( {BCD} \right)\\E \in MP \Rightarrow E \in \left( {CMP} \right)\end{array} \right.\] \[\left( 2 \right)\].

Từ \[\left( 1 \right)\]\[\left( 2 \right)\]\[ \Rightarrow \left( {BCD} \right) \cap \left( {CMP} \right) = CE\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ