Câu hỏi:

05/11/2025 59 Lưu

Gọi \(X\) là tập nghiệm của phương trình \(\cos \left( {\frac{x}{2} + 15^\circ } \right) = \sin x\). Khi đó

A. \(290^\circ \in X\).                            
B. \(250^\circ \in X\).                     
C. \(220^\circ \in X\).                          
D. \(240^\circ \in X\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: A

Ta có \({\rm{cos}}\left( {\frac{x}{2} + 15^\circ } \right) = {\rm{sin}}x \Leftrightarrow {\rm{cos}}\left( {\frac{x}{2} + 15^\circ } \right) = {\rm{cos}}x\left( {90^\circ - x} \right)\)

\( \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} + 15^\circ = 90^\circ - x + k360^\circ \\\frac{x}{2} + 15^\circ = - 90^\circ + x + k360^\circ \end{array} \right.\left( {k \in \mathbb{Z}} \right) \Leftrightarrow \left[ \begin{array}{l}x = 50^\circ + k240^\circ \\x = 210^\circ - k720^\circ \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vậy \(290^\circ \in X\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số nghịch biến trên khoảng \[\left( {0;3} \right)\];
B. Hàm số đồng biến trên khoảng \[\left( { - \infty ;1} \right)\];
C. Hàm số nghịch biến trên khoảng \[\left( {0;2} \right)\];
D. Hàm số đồng biến trên khoảng \[\left( { - \infty ;3} \right)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Từ đồ thị hàm số ta có

Trên khoảng \[\left( { - \infty ;0} \right)\], đồ thị hàm số đi lên từ trái sang phải nên hàm số đồng biến trên khoảng \[\left( { - \infty ;0} \right)\].

Trên khoảng \[\left( {0;2} \right)\], đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến trên khoảng \[\left( {0;2} \right)\].

Trên khoảng \[\left( {2; + \infty } \right)\], đồ thị hàm số đi lên từ trái sang phải nên hàm số đồng biến trên khoảng \[\left( {2; + \infty } \right)\].

Vậy khẳng định C đúng.

Câu 2

A. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương;      
B. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng hướng; 
C. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) có độ dài bằng nhau;        
D. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn ngược hướng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Với vectơ \(\overrightarrow a \) khác \(\overrightarrow 0 \) và một số thực \(k \ne 0\), ta có hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương với nhau.

Câu 4

A. \(\overrightarrow {MN} = 2\overrightarrow {PQ} \); 
B. \(\overrightarrow {MQ} = 2\overrightarrow {NP} \);     
C. \(\overrightarrow {MN} = - 2\overrightarrow {PQ} \);     
D. \(\overrightarrow {MQ} = - 2\overrightarrow {NP} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow {OA} + \overrightarrow {OB} - \overrightarrow {EO} = \overrightarrow 0 \);                                 
B. \(\overrightarrow {BC} - \overrightarrow {FE} = \overrightarrow {AD} \); 
C. \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {EB} - \overrightarrow {OC} \); 
D. \(\overrightarrow {AB} + \overrightarrow {CD} - \overrightarrow {FE} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \);                                   
B. \(\overrightarrow {DA} + \overrightarrow {DC} = \overrightarrow {DB} \);                                   
C. \(\overrightarrow {AC} = \overrightarrow {BD} \); 
D. \(\overrightarrow {AB} = \overrightarrow {DC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(a\sqrt {10} \);      
B. \(4a\);                         
C. \(3a\);                          
D. \(5a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP