Câu hỏi:

05/11/2025 54 Lưu

Phương trình \[\tan \frac{x}{2} = \tan x\] có nghiệm là

A. \[x = k2\pi ,k \in \mathbb{Z}\].                                         
B. \[x = k\pi ,k \in \mathbb{Z}\].
C. \[x = \pi + k2\pi ,k \in \mathbb{Z}\].         
D. Cả A, B, C đều sai.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

ĐK: \[\cos \frac{x}{2} \ne 0,\cos x \ne 0\]

Ta có: \[\tan \frac{x}{2} = \tan x \Leftrightarrow \frac{x}{2} = x + k\pi \Leftrightarrow x = k2\pi ,k \in \mathbb{Z}\] (thỏa mãn).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hàm số nghịch biến trên khoảng \[\left( {0;3} \right)\];
B. Hàm số đồng biến trên khoảng \[\left( { - \infty ;1} \right)\];
C. Hàm số nghịch biến trên khoảng \[\left( {0;2} \right)\];
D. Hàm số đồng biến trên khoảng \[\left( { - \infty ;3} \right)\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Từ đồ thị hàm số ta có

Trên khoảng \[\left( { - \infty ;0} \right)\], đồ thị hàm số đi lên từ trái sang phải nên hàm số đồng biến trên khoảng \[\left( { - \infty ;0} \right)\].

Trên khoảng \[\left( {0;2} \right)\], đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến trên khoảng \[\left( {0;2} \right)\].

Trên khoảng \[\left( {2; + \infty } \right)\], đồ thị hàm số đi lên từ trái sang phải nên hàm số đồng biến trên khoảng \[\left( {2; + \infty } \right)\].

Vậy khẳng định C đúng.

Câu 2

A. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương;      
B. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng hướng; 
C. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) có độ dài bằng nhau;        
D. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn ngược hướng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Với vectơ \(\overrightarrow a \) khác \(\overrightarrow 0 \) và một số thực \(k \ne 0\), ta có hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương với nhau.

Câu 4

A. \(a\sqrt {10} \);      
B. \(4a\);                         
C. \(3a\);                          
D. \(5a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(10\sqrt 3 \);          
B. \(60\sqrt {13} \);                                 
C.\(280\);                     
D. \(10\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {MN} = 2\overrightarrow {PQ} \); 
B. \(\overrightarrow {MQ} = 2\overrightarrow {NP} \);     
C. \(\overrightarrow {MN} = - 2\overrightarrow {PQ} \);     
D. \(\overrightarrow {MQ} = - 2\overrightarrow {NP} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP