Câu hỏi:

05/11/2025 16 Lưu

Trong mặt phẳng \(\left( \alpha \right)\) cho tứ giác \(ABCD\), điểm \(E \notin \left( \alpha \right)\). Hỏi có bao nhiêu mặt phẳng tạo bởi ba trong năm điểm \(A,B,C,D,E\)?

A. \[6\].                    
B. \[7\].                    
C. \[8\].                        
D. \[9\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: B

Điểm \(E\) và 2 điểm bất kì trong 4 điểm \(A,B,C,D\) tạo thành 6 mặt phẳng, bốn điểm \(A,B,C,D\) tạo thành 1 mặt phẳng.

Vậy có tất cả 7 mặt phẳng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Vô số mặt phẳng \(\left( P \right)\)\(\left( Q \right)\).                                                  
B. Một mặt phẳng \(\left( P \right)\), vô số mặt phẳng \(\left( Q \right)\).
C. Một mặt phẳng \(\left( Q \right)\), vô số mặt phẳng \(\left( P \right)\).                                    
D. Một mặt phẳng \(\left( P \right)\), một mặt phẳng \(\left( Q \right)\).

Lời giải

Lời giải

Đáp án đúng là: D

\(c\) song song với giao tuyến của \(\left( P \right)\)\(\left( Q \right)\) nên \(c\,{\rm{//}}\,\left( P \right)\)\(c\,{\rm{//}}\,\left( Q \right)\).

Khi đó, \(\left( P \right)\) là mặt phẳng chứa \(a\) và song song với \(c,\)\(a\)\(c\) chéo nhau nên chỉ có một mặt phẳng như vậy.

Tương tự cũng chỉ có một mặt phẳng \(\left( Q \right)\) chứa \(b\) và song song với \(c\).

Vậy có nhiều nhất một mặt phẳng \(\left( P \right)\) và một mặt phẳng \(\left( Q \right)\) thỏa yêu cầu bài toán.

Lời giải  Đáp án đúng là: D (ảnh 1)

Câu 2

A. Các đường thẳng \[MP,NQ,SO\] đồng quy. 
B. Các đường thẳng \[MP,NQ,SO\] chéo nhau.
C. Các đường thẳng \[MP,NQ,SO\] song song.
D. Các đường thẳng \[MP,NQ,SO\] trùng nhau.

Lời giải

Lời giải

Đáp án đúng là: A

Trong mặt phẳng \[\left( {MNPQ} \right)\] gọi \[I = MP \cap NQ\].

Ta sẽ chứng minh \[I \in SO\].

Dễ thấy \[SO = \left( {SAC} \right) \cap \left( {SBD} \right)\].

\[\left\{ \begin{array}{l}I \in MP \subset \left( {SAC} \right)\\I \in NQ \subset \left( {SBD} \right)\end{array} \right.\]

\[ \Rightarrow \left\{ \begin{array}{l}I \in \left( {SAC} \right)\\I \in \left( {SBD} \right)\end{array} \right. \Rightarrow I \in SO\]

Vậy \[MP,NQ,SO\] đồng quy tại \[I\].

Lời giải  Đáp án đúng là: A (ảnh 1)

Câu 4

A. \(x = \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).                                                  
B. \(x = - \frac{\pi }{4} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).                                                                 
C. \(x = \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).                                                  
D. \(x = - \frac{\pi }{4} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[x = k2\pi ,k \in \mathbb{Z}\].                                         
B. \[x = k\pi ,k \in \mathbb{Z}\].
C. \[x = \pi + k2\pi ,k \in \mathbb{Z}\].         
D. Cả A, B, C đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP