Câu hỏi:

05/11/2025 80 Lưu

Cho góc lượng giác \(\left( {Ou,Ov} \right)\) có số đo \( - \frac{\pi }{7}\). Trong các số \( - \frac{{29\pi }}{7};\,\,\, - \frac{{22\pi }}{7};\,\,\,\frac{{6\pi }}{7};\,\,\,\frac{{41\pi }}{7}\), những số nào là số đo của một góc lượng giác có cùng tia đầu, tia cuối với góc đã cho?

A. \( - \frac{{29\pi }}{7};\,\,\,\frac{{41\pi }}{7}\).                                                     
B. \( - \frac{{29\pi }}{7};\,\,\, - \frac{{22\pi }}{7}\).                                                     
C. \( - \frac{{22\pi }}{7};\,\,\,\frac{{41\pi }}{7}\).                                                     
D. \(\frac{{6\pi }}{7};\,\,\,\frac{{41\pi }}{7}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: C

Công thức cộng: \(\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(2a\);                        
B. \(a\sqrt 3 \);          
C. \(2a\sqrt 3 \);   
D. \(\frac{{a\sqrt 3 }}{2}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Hướng dẫn giải  Đáp án đúng là: C (ảnh 1)

Xét tam giác \(ABC\)\(AH\) là đường cao.

Ta có \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AH} \) vậy \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {2\overrightarrow {AH} } \right| = 2AH\)

Xét tam giác \(AHB\) vuông tại \(H\)\(AB = 2a,\,BH = a\)

Áp dụng định lí Pitago ta có:

 \(\begin{array}{l}A{H^2} = A{B^2} - B{H^2} = {\left( {2a} \right)^2} - {a^2} = 3{a^2}\\ \Rightarrow AH = a\sqrt 3 \end{array}\)

Vậy \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = 2a\sqrt 3 \).

Câu 2

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)                                      
B. \(\left| {\overrightarrow {OA} } \right| = a\)                 
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\)                                    
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

\(\widehat A = 60^\circ \) nên \(\Delta ABC\) đều nên ta có \(A{O^2} = A{B^2} - B{O^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{3{a^2}}}{4}\)

\( \Rightarrow \left| {\overrightarrow {AO} } \right| = AO = \frac{{a\sqrt 3 }}{2}\).

Câu 3

A. \(\overrightarrow {BP} \);                          
B. \(\overrightarrow {MN} \);                             
C. \(\overrightarrow {CP} \);                              
D. \(\overrightarrow {PA} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hai vectơ cùng phương nếu giá của chúng song song hoặc trùng nhau;
B. Hai vectơ được gọi là bằng nhau nếu độ dài của chúng bằng nhau;
C. Giá của vectơ là đường thẳng vuông góc với vectơ đó;
D. Vectơ không là vectơ có độ dài bằng mọi vectơ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[I\left( { - \frac{b}{{2a}};\,\frac{\Delta }{{4a}}} \right)\];                                                   
B. \[I\left( { - \frac{b}{a};\, - \frac{\Delta }{{4a}}} \right)\];
C. \[I\left( { - \frac{b}{{2a}};\, - \frac{\Delta }{{4a}}} \right)\];                                                   
D. \[I\left( {\frac{b}{{2a}};\,\frac{\Delta }{{4a}}} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{5\sqrt 3 }}{2}\);                             
B. \(10\sqrt 3 \);                                 
C.\(\frac{{20\sqrt 3 }}{7}\);                         
D. \(\frac{{10\sqrt 3 }}{7}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP