Câu hỏi:

05/11/2025 36 Lưu

Trong các khẳng định sau, khẳng định nào đúng?

A. Nếu 3 điểm \(A,\;B,\;C\) là 3 điểm chung của 2 mặt phẳng \(\left( P \right)\)\(\left( Q \right)\) thì \(A,\;B,\;C\) thẳng hàng\(.\)
B. Nếu \(A,\;B,\;C\) thẳng hàng và \(\left( P \right)\), \(\left( Q \right)\) có điểm chung là \(A\) thì \(B,\;C\) cũng là 2 điểm chung của \(\left( P \right)\)\(\left( Q \right)\)\(.\)
C. Nếu 3 điểm \(A,\;B,\;C\) là 3 điểm chung của 2 mặt phẳng \(\left( P \right)\)\(\left( Q \right)\) phân biệt thì \(A,\;B,\;C\) không thẳng hàng\(.\)
D. Nếu\(A,\;B,\;C\) thẳng hàng và\(A,\;B\) là 2 điểm chung của \(\left( P \right)\)\(\left( Q \right)\) thì \(C\)cũng là điểm chung của \(\left( P \right)\)\(\left( Q \right)\)\(.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

Hai mặt phẳng phân biệt không song song với nhau thì chúng có duy nhất một giao tuyến.

Ÿ A sai. Nếu \(\left( P \right)\)\(\left( Q \right)\) trùng nhau thì 2 mặt phẳng có vô số điểm chung. Khi đó, chưa đủ điều kiện để kết luận \(A,\;B,\;C\) thẳng hàng\(.\)

Ÿ B sai. Có vô số đường thẳng đi qua \(A\), khi đó \(B,\;C\) chưa chắc đã thuộc giao tuyến của \(\left( P \right)\)\(\left( Q \right)\)

Ÿ C sai. Hai mặt phẳng \(\left( P \right)\)\(\left( Q \right)\) phân biệt giao nhau tại 1 giao tuyến duy nhất, nếu 3 điểm \(A,\;B,\;C\) là 3 điểm chung của 2 mặt phẳng thì \(A,\;B,\;C\) cùng thuộc giao tuyến.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)                                      
B. \(\left| {\overrightarrow {OA} } \right| = a\)                 
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\)                                    
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

\(\widehat A = 60^\circ \) nên \(\Delta ABC\) đều nên ta có \(A{O^2} = A{B^2} - B{O^2} = {a^2} - {\left( {\frac{a}{2}} \right)^2} = \frac{{3{a^2}}}{4}\)

\( \Rightarrow \left| {\overrightarrow {AO} } \right| = AO = \frac{{a\sqrt 3 }}{2}\).

Câu 2

A. \(\overrightarrow {BP} \);                          
B. \(\overrightarrow {MN} \);                             
C. \(\overrightarrow {CP} \);                              
D. \(\overrightarrow {PA} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: D (ảnh 1)

Xét tam giác \(ABC\), có: \(M,\,P\) lần lượt là trung điểm của \(AB,\,\,CA\) nên \(MP\) là đường trung bình của tam giác \(ABC\).

\( \Rightarrow MP = BN = \frac{1}{2}BC\)

Suy ra: \(\overrightarrow {MP} + \overrightarrow {NP} = \overrightarrow {BN} + \overrightarrow {NP} = \overrightarrow {BP} \).

Câu 3

A. \(2a\);                        
B. \(a\sqrt 3 \);          
C. \(2a\sqrt 3 \);   
D. \(\frac{{a\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Hai vectơ cùng phương nếu giá của chúng song song hoặc trùng nhau;
B. Hai vectơ được gọi là bằng nhau nếu độ dài của chúng bằng nhau;
C. Giá của vectơ là đường thẳng vuông góc với vectơ đó;
D. Vectơ không là vectơ có độ dài bằng mọi vectơ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.P¯:"x:x2=x";                                                                           
B. P¯:"x:x2x" ;
C. P¯:"x:x2x";                                                                           
D. P¯:"x:x2=x" .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP