Một chiếc xe được kéo bởi một lực \(\vec F\) có độ lớn \(50\;{\rm{N}}\), di chuyển theo quãng đường từ \(A\) đến \(B\) có chiều dài \(200\;{\rm{m}}\). Cho biết góc hợp bởi lực \(\vec F\) và \(\overrightarrow {AB} \) bằng \(30^\circ \) và lực \(\vec F\) được phân tích thành hai lực \({\vec F_1},{\vec F_2}\). Gọi \(m,n,k\) lần lượt là công sinh ra bởi các lực \(\vec F,{\vec F_1},\overrightarrow {{F_2}} \) . Khi đó tính \(S = m - n - k\).

Quảng cáo
Trả lời:
Trả lời: 0
Đặt \(\vec F = \overrightarrow {AN} ,\overrightarrow {{F_1}} = \overrightarrow {AP} ,\overrightarrow {{F_2}} = \overrightarrow {AM} \).
Khi đó \(AMNP\) là hình bình hành, mà \(AM \bot AP\) nên \(AMNP\) là hình chữ nhật.
Ta có : \(AN = 50,AM = AN \cdot \cos 30^\circ = 50 \cdot \frac{{\sqrt 3 }}{2} = 25\sqrt 3 \).
\(AP = MN = \sqrt {A{N^2} - A{M^2}} = 25.\)
Lực \(\vec F\) sinh ra công \(A = |\vec F| \cdot |\overrightarrow {AB} | \cdot \cos 30^\circ = 50 \cdot 200 \cdot \frac{{\sqrt 3 }}{2} = 5000\sqrt 3 \;{\rm{J}}\).
Lực \({\vec F_1}\) có độ lớn \(25\;{\rm{N}}\) và tạo với phương dịch chuyển góc \(90^\circ \) nên công sinh ra là \({A_1} = \left| {\overrightarrow {{F_1}} } \right| \cdot |\overrightarrow {AB} | \cdot \cos 90^\circ = 0\;{\rm{J}}\).
Lực \({\vec F_2}\) có độ lớn \(25\sqrt 3 {\rm{\;N}}\) và tạo với phương dịch chuyển góc \(0^\circ \) nên công \(\sinh \) ra là \({A_2} = \left| {\overrightarrow {{F_2}} } \right| \cdot |\overrightarrow {AB} | \cdot \cos 0^\circ = 25\sqrt 3 \cdot 200 \cdot 1 = 5000\sqrt 3 \;{\rm{J}}\).
Do đó \(S = m - n - k = 5000\sqrt 3 - 0 - 5000\sqrt 3 = 0\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 8
Dựng trục \(Oxy\) như hình vẽ.

Gọi \((P):y = a{x^2} + bx + c(a \ne 0)\).
Ta có \((P)\) qua các điểm \(I(0;4),E(2;3),F( - 2;3)\) nên \(\left\{ {\begin{array}{*{20}{l}}{c = 4}\\{4a + 2b + c = 3}\\{4a - 2b + c = 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{1}{4}}\\{b = 0}\\{c = 4}\end{array}} \right.} \right.\)
Ta có \((P):y = - \frac{1}{4}{x^2} + 4\).
Hai điểm \(A,B\) là giao điểm của \((P)\) với \(Ox\) nên hoành độ thỏa mãn
\( - \frac{1}{4}{x^2} + 4 = 0 \Leftrightarrow x = \pm 4\).
Do vậy \(A( - 4;0),B(4;0) \Rightarrow AB = 8\).
Câu 2
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong các câu sau có bao nhiêu câu là mệnh đề:
(1): Số 3 là một số chẵn.
(2): \(2x + 1 = 3\).
(3): Các em hãy cố gắng làm bài thi cho tốt.
(4): \(1 < 3 \Rightarrow 4 < 2\).
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12.
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong các câu sau có bao nhiêu câu là mệnh đề:
(1): Số 3 là một số chẵn.
(2): \(2x + 1 = 3\).
(3): Các em hãy cố gắng làm bài thi cho tốt.
(4): \(1 < 3 \Rightarrow 4 < 2\).
A. 2.
Lời giải
Đáp án đúng là: A
Mệnh đề là câu (1) và (4).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\overrightarrow {AN} = \frac{1}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} \).
B. \(\overrightarrow {AN} = \frac{1}{6}\overrightarrow {AB} - \frac{5}{6}\overrightarrow {AC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(2{x^2} + 3y > 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\overrightarrow {AM} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

