Câu hỏi:

05/11/2025 15 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x + y \le 4\\x + 2y \le 4\\x \ge 0\\y \ge 0\end{array} \right.\).

a) Hệ trên không là hệ bất phương trình bậc nhất hai ẩn.

b) Cặp \(\left( {4;1} \right)\) thuộc miền nghiệm của hệ.

c) Biểu diễn miền nghiệm của hệ là phần được tô đậm như trong hình dưới đây

a) Hệ trên không là hệ bất phương trình bậc nhất hai ẩn.  b) Cặp (4;1) thuộc miền nghiệm của hệ. (ảnh 1)

d) Gọi \(\left( {x;y} \right)\) thỏa mãn hệ. Biểu thức \(F\left( {x;y} \right) = 3x + 4y + 2024\) đạt giá trị lớn nhất tại \(\left( {0;2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) S, c) Đ, d) S

a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Ta thấy tọa độ điểm \(\left( {4;1} \right)\) không thỏa mãn hệ nên \(\left( {4;1} \right)\) không thuộc miền nghiệm của hệ.

c) Miền nghiệm của hệ như hình vẽ

a) Hệ trên không là hệ bất phương trình bậc nhất hai ẩn.  b) Cặp (4;1) thuộc miền nghiệm của hệ. (ảnh 2)

d) Ta có \(F\left( O \right) = 2024,F\left( H \right) = 2032,F\left( G \right) = 2030,F\left( E \right) = \frac{{6100}}{3}\) nên biểu thức \(F\left( {x;y} \right) = 3x + 4y + 2024\) đạt giá trị lớn nhất là tại \(\left( {\frac{4}{3};\frac{4}{3}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) S, b) Đ, c) Đ, d) S

a) Ta có \(\cot \alpha  =  - \frac{1}{3}\)\( \Rightarrow \tan \alpha  = \frac{1}{{\cot \alpha }} =  - 3\).

b) Có \(\cot \alpha  < 0\) và \(0^\circ  < \alpha  < 180^\circ \) nên \(\alpha  \in \left( {90^\circ ;180^\circ } \right)\).

c) Có \(1 + {\cot ^2}\alpha  = \frac{1}{{{{\sin }^2}\alpha }}\)\( \Rightarrow \sin \alpha  =  \pm \frac{1}{{\sqrt {1 + {{\cot }^2}\alpha } }} =  \pm \frac{1}{{\sqrt {1 + {{\left( {\frac{{ - 1}}{3}} \right)}^2}} }} =  \pm \frac{{3\sqrt {10} }}{{10}}\).

Do \(0^\circ  < \alpha  < 180^\circ \) nên \(\sin \alpha  > 0\). Vậy \(\sin \alpha  = \frac{{3\sqrt {10} }}{{10}}\).

d) \(P = \frac{{2\sin \alpha  - 3\cos \alpha }}{{3\sin \alpha  + 2\cos \alpha }}\)\( = \frac{{2\tan \alpha  - 3}}{{3\tan \alpha  + 2}}\)\( = \frac{{2.\left( { - 3} \right) - 3}}{{3.\left( { - 3} \right) + 2}} = \frac{9}{7}\).

Lời giải

Trả lời: 2

Xét \(v(t) = \frac{1}{2}{t^2} - 4t + 10\) với \( - \frac{b}{{2a}} = 4,a = \frac{1}{2} > 0\) nên bề lõm parabol hướng lên.

Bảng biến thiên của \(v(t)\) :

Trong 10 giây đầu tiên, vận tốc của vật đạt giá trị nhỏ nhất bằng bao nhiêu m/s? (ảnh 1)

Vậy, ở giây thứ tư thì vận tốc của vật đạt giá trị nhỏ nhất là \(v{(t)_{\min }} = 2\).

Câu 5

A. Số  chia hết cho . 

B. Hình thoi có hai đường chéo vuông góc.

C. Hôm nay trời không mưa. 
D. Tam giác đều có 3 góc bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2x - 5y + 3z \le 0\). 

B. \(3{x^2} + 2x - 4 > 0\).  

C. \(2{x^2} + 5y > 3\). 
D. \(2x + 3y < 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP