Cho tam giác \(ABC\) có \(G\) là trọng tâm. Gọi \(D\) là điểm đối xứng của \(B\) qua \(G,M\) là trung điểm của \(BC\). Khi đó:
a) \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} \).
b) \(\overrightarrow {AG} = 2\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
c) \(\overrightarrow {CD} = \overrightarrow {AB} - \overrightarrow {AC} + \frac{1}{3}\overrightarrow {BN} \).
d) \(\overrightarrow {MD} = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)
Cho tam giác \(ABC\) có \(G\) là trọng tâm. Gọi \(D\) là điểm đối xứng của \(B\) qua \(G,M\) là trung điểm của \(BC\). Khi đó:
a) \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} \).
b) \(\overrightarrow {AG} = 2\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
c) \(\overrightarrow {CD} = \overrightarrow {AB} - \overrightarrow {AC} + \frac{1}{3}\overrightarrow {BN} \).
d) \(\overrightarrow {MD} = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) Đ
a) \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} \).
b) Ta có: \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) = \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
c) Ta có: \(\overrightarrow {CD} = \overrightarrow {CB} + \overrightarrow {BD} = \overrightarrow {AB} - \overrightarrow {AC} + \frac{4}{3}\overrightarrow {BN} \).
d) Ta có: \(\overrightarrow {MD} = \overrightarrow {MG} + \overrightarrow {GD} = - \frac{1}{3}\overrightarrow {AM} + \frac{2}{3}\overrightarrow {BN} = - \frac{1}{3} \cdot \frac{1}{2}(\overrightarrow {AB} + \overrightarrow {AC} ) + \frac{2}{3}(\overrightarrow {BA} + \overrightarrow {AN} )\)
\( = - \frac{1}{6}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} + \frac{2}{3} \cdot \frac{1}{2}\overrightarrow {AC} = - \frac{5}{6}\overrightarrow {AB} + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 9
Xét một người mua \(x\) gói kẹo ( \(x\) nguyên dương).
Khi đó: Gói thứ nhất người đó trả 60000 đồng.
Số gói kẹo còn lại là \(x - 1\) và người đó chỉ phải trả
\(60000 - 10\% .60000 = 54000\) đồng (mỗi gói).
Vậy số tiền phải trả khi mua kẹo được tính theo công thức
\(y = 60000 + (x - 1) \cdot 54000 = 54000x + 6000\).
Số tiền bạn An dùng mua kẹo phải không quá 500000 đồng, suy ra: \(54000x + 6000 \le 500000 \Rightarrow x \le \frac{{247}}{{27}} \approx 9,148\).
Vậy, với số tiền hiện có, bạn An chỉ có thể mua được tối đa 9 gói kẹo.
Câu 2
A. \(b = - 1\).
Lời giải
Đáp án đúng là: A
Vì \(\left( P \right):y = {x^2} + bx + 1\) đi qua điểm \(A\left( { - 1;3} \right)\) nên \({\left( { - 1} \right)^2} + b.\left( { - 1} \right) + 1 = 3\)\( \Leftrightarrow b = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

