Câu hỏi:

05/11/2025 104 Lưu

Một cửa hàng kinh doanh giày và giá để nhập một đôi giày là 40 đô la. Theo nghiên cứu của bộ phận kinh doanh thì nếu cửa hàng bán mỗi đôi giày với giá \(x\) đô la thì mỗi tháng sẽ bán được \(120 - x\) đôi giày. Hỏi cửa hàng bán giá bao nhiêu đô la cho một đôi giày để có thể thu lãi cao nhất trong tháng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 80

Gọi \(x\) (đôla) là giá mỗi đôi giày bán ra thì số tiền lãi tương ứng là \(x - 40\) (đô la).

Số tiền lãi thu được mỗi tháng là \(f(x) = (x - 40)(120 - x) =  - {x^2} + 160x - 4800\).

Đây là hàm số bậc hai với \(a =  - 1,b = 160,c =  - 4800 \Rightarrow  - \frac{b}{{2a}} = 80\).

Vì \(a =  - 1 < 0\) nên hàm số đạt giá trị lớn nhất bằng \(f(80) =  - {80^2} + 160.80 - 4800 = 1600\), ứng với \(x = 80\).

Vậy, để tối ưu hóa lợi nhuận, cửa hàng cần đưa ra giá bán 80 đô la mỗi đôi giày, khi đó lợi nhuận tối đa trong tháng là 1600 đô la.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) S, d) Đ

Cho tam giác ABC có G là trọng tâm. Gọi D là điểm đối xứng của B qua G, M là trung điểm của BC. Khi đó:  a) vec MD = vec MG + vec GD. (ảnh 1)

a) \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD} \).

b) Ta có: \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AM}  = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) = \frac{1}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} \).

c) Ta có: \(\overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {BD}  = \overrightarrow {AB}  - \overrightarrow {AC}  + \frac{4}{3}\overrightarrow {BN} \).

d) Ta có: \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD}  =  - \frac{1}{3}\overrightarrow {AM}  + \frac{2}{3}\overrightarrow {BN}  =  - \frac{1}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) + \frac{2}{3}(\overrightarrow {BA}  + \overrightarrow {AN} )\)

\( =  - \frac{1}{6}\overrightarrow {AB}  - \frac{1}{6}\overrightarrow {AC}  - \frac{2}{3}\overrightarrow {AB}  + \frac{2}{3} \cdot \frac{1}{2}\overrightarrow {AC}  =  - \frac{5}{6}\overrightarrow {AB}  + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)

Lời giải

Trả lời: 0

Ta có điêu kiện: \( - 20 < x < 30\).

Diện tích hình chữ nhật lúc sau là: \(S = (30 - x) \cdot (20 + x) =  - {x^2} + 10x + 600\;{\rm{c}}{{\rm{m}}^{\rm{2}}}\).

Diện tích hình chữ nhật lúc đầu là \(600\;{\rm{c}}{{\rm{m}}^{\rm{2}}}\).

Đặt \(f(x) =  - {x^2} + 10x + 600 - 600 =  - {x^2} + 10x\).

\(f(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 10}\end{array}} \right.\).

Ta có bảng xét dấu của \(f(x)\)

Một khung dây thép hình chữ nhật với chiều dài 30cm và chiều rộng 20cm được uốn lại thành hình chữ nhật mới với kích thước (30 - x)cm và (20 + x)cm. Giả sử diện tích khung sau khu uốn tăng lên với x thuộc (a;b). Tính a.b. (ảnh 1)

Diện tích của khung sau khi uốn tăng lên khi \(f(x) > 0 \Leftrightarrow x \in (0;10)\).

Suy ra \(a = 0;b = 10\). Do đó \(a.b = 0\).

Câu 4

A. \(b =  - 1\). 

B. \(b = 1\). 
C. \(b = 3\).
D. \(b =  - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP