Câu hỏi:

05/11/2025 32 Lưu

Trong mặt phẳng \(\left( \alpha \right)\), cho 4 điểm \(A,\;B,\;C,\;D\) trong đó không có 3 điểm nào thẳng hàng. Điểm \(S\) không thuộc mặt phẳng \(\left( \alpha \right)\). Có mấy mặt phẳng tạo bởi \(S\) và 2 trong 4 điểm nói trên?

A. 4.                         
B. 5.                         
C. 6.                             
D. 8.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: C

Với điểm \(S\) không thuộc mặt phẳng \(\left( \alpha \right)\) và 4 điểm \(A,\;B,\;C,\;D\) thuộc mặt phẳng \(\left( \alpha \right),\) ta có \(C_4^2\) cách chọn 2 trong 4 điểm \(A,\;B,\;C,\;D\) cùng với điểm \(S\) lập thành 1 mặt phẳng xác định. Vậy số mặt phẳng tạo được là 6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác \(AHB\) vuông tại \(H\), có:

\(A{B^2} = A{H^2} + H{B^2} = {1^2} + {6^2} = 37\)

\( \Leftrightarrow AB = \sqrt {37} \,\,cm\)

\(\tan ABH = \frac{{AH}}{{BH}} = \frac{1}{6} \Rightarrow \widehat {ABH} \approx 9,5^\circ \).

\( \Rightarrow \widehat {ABC} = 90^\circ - 9,5^\circ = 80,5^\circ \)

\( \Rightarrow \widehat {ACB} = 180^\circ - 80,5^\circ - 44^\circ = 55,5^\circ \)

Áp dụng định lí sin trong tam giác \(ABC\), có:

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {BAC}}} \Leftrightarrow BC = \frac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{\sqrt {37} .\sin 44^\circ }}{{\sin 55,5^\circ }} \approx 5,1\,\,\left( m \right).\)

Vậy chiều cao của cây đèn đường khoảng \(5,1\,\,m\).

Câu 2

A. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương;     
B. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng hướng; 
C. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) có độ dài bằng nhau;        
D. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn ngược hướng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Với vectơ \(\overrightarrow a \) khác \(\overrightarrow 0 \) và một số thực \(k \ne 0\), ta có hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương với nhau.

Câu 3

A. \(\overrightarrow {OA} + \overrightarrow {OB} - \overrightarrow {EO} = \overrightarrow 0 \);                                 
B. \(\overrightarrow {BC} - \overrightarrow {FE} = \overrightarrow {AD} \); 
C. \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {EB} - \overrightarrow {OC} \); 
D. \(\overrightarrow {AB} + \overrightarrow {CD} - \overrightarrow {FE} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(1\);                        
B. \(2\);                        
C. \(3\);                                     
D. \(4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(a > 0,\,\,b < 0,\,\,c > 0\);                                                                           
B. \(a < 0,\,\,b > 0,\,\,c > 0\);
C. \(a < 0,\,\,b < 0,\,\,c > 0\);                                                                           
D. \(a < 0,\,\,b > 0,\,\,c < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(M = 10\);             
B. \(M = 0\);                
C. \(M = + \infty \);                                 
D. \(M \in \emptyset \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP