Câu hỏi:

05/11/2025 53 Lưu

Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu \(h\) (mét) của mực nước trong kênh được tính tại thời điểm \(t\) (giờ) trong một ngày bởi công thức \[h = 3\cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) + 12.\] Mực nước của kênh cao nhất khi

A. \(t = 13\) (giờ).            
B. \(t = 16\) (giờ) .           
C. \(t = 15\) (giờ).    
D. \(t = 14\) (giờ).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Mực nước của kênh cao nhất khi \[h\] lớn nhất nên ta có:

\(\cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) = 1 \Leftrightarrow \frac{{\pi t}}{8} + \frac{\pi }{4} = k2\pi \) với \(0 < t \le 24\)\(k \in \mathbb{Z}.\)

Lần lượt thay các đáp án, ta được đáp án B thỏa mãn.

Vì với \(t = 14 \Rightarrow \frac{{\pi t}}{8} + \frac{\pi }{4} = 2\pi \) (đúng với \(k = 1 \in \mathbb{Z}\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB} = 3\overrightarrow {AC} \); 
B. \(\overrightarrow {AB} = - \frac{1}{3}\overrightarrow {AC} \);                       
C. \(\overrightarrow {BC} = \frac{3}{4}\overrightarrow {AC} \);                
D. \(\overrightarrow {BC} = - 3\overrightarrow {AB} \).

Lời giải

Đáp án đúng là: C

Từ hình vẽ, ta có \[AB = \frac{1}{4}AC\], \(BC = \frac{3}{4}AC,\,\,BC = 3AB\).

Mà hai vectơ \(\overrightarrow {AC} \)\[\overrightarrow {AB} \] cùng hướng nên \[\overrightarrow {AB} = \frac{1}{4}\overrightarrow {AC} \], do đó đáp án A và B sai.

Hai vectơ \(\overrightarrow {BC} \)\[\overrightarrow {AC} \] cùng hướng nên \(\overrightarrow {BC} = \frac{3}{4}\overrightarrow {AC} \), do đó đáp án C đúng.

Hai vectơ \(\overrightarrow {BC} \)\[\overrightarrow {AB} \] cùng hướng nên \(\overrightarrow {BC} = 3\overrightarrow {AB} \), do đó đáp án D sai.

Lời giải

Đáp án đúng là: B

Hai vectơ \(\overrightarrow u \)\(\overrightarrow v \) vuông góc với nhau nên \(\overrightarrow u \cdot \overrightarrow v = 0\).

\( \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right) \cdot \left( {\overrightarrow a + \overrightarrow b } \right) = 0\)\( \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} + \frac{2}{5}\overrightarrow a \cdot \overrightarrow b - 3\overrightarrow a \cdot \overrightarrow b - 3{\overrightarrow b ^2} = 0\)

\( \Leftrightarrow \frac{2}{5}{\left| {\overrightarrow a } \right|^2} - \frac{{13}}{5}\overrightarrow a \cdot \overrightarrow b - 3{\left| {\overrightarrow b } \right|^2} = 0\)\( \Leftrightarrow \overrightarrow a \cdot \overrightarrow b = - 1 \Leftrightarrow \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \alpha = - 1\)\( \Leftrightarrow \cos \alpha = - 1\)

Do đó, \(\alpha = 180^\circ \).

Câu 4

A. 7;                            
B. 129;                            
C. 49;                               
D. \(\sqrt {129} \).  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) (\(\overrightarrow b \) khác \(\overrightarrow 0 \)) cùng phương khi và chỉ khi có một số \(k\) sao cho 

A. \(\overrightarrow a \ne k\overrightarrow b \); 
B. \(\overrightarrow a = k\overrightarrow b \);     
C. \(\overrightarrow a + \overrightarrow b = k\);     
D. \(\overrightarrow a - \overrightarrow b = k\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hình vuông \(ABCD\) có cạnh bằng 8. Độ dài của vectơ \(\overrightarrow {AB} + \overrightarrow {AD} \)

A. 8;                            
B. 16;                              
C. \(8\sqrt 2 \);    
D. \(2\sqrt 8 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \);                                   
B. \(\overrightarrow {DA} + \overrightarrow {DC} = \overrightarrow {DB} \);                                   
C. \(\overrightarrow {AC} = \overrightarrow {BD} \); 
D. \(\overrightarrow {AB} = \overrightarrow {DC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP