Câu hỏi:

05/11/2025 126 Lưu

Một cấp số nhân có công bội bằng \(3\) và số hạng đầu bằng \(5\). Biết số hạng chính giữa là \(32\,\,805\). Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

A. \(18\).                          
B. \(17\).                      
C. \(16\).                               
D. \(9\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có \[32\,\,805 = {u_n} = {u_1}{q^{n - 1}} = 5\,.\,{3^{n - 1}}\]

\[ \Leftrightarrow {3^{n - 1}} = 6\,\,561 = {3^8} \Leftrightarrow n = 9\].

Vậy \({u_9}\) là số hạng chính giữa của cấp số nhân nên cấp số nhân đã cho có 17 số hạng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB} = 3\overrightarrow {AC} \); 
B. \(\overrightarrow {AB} = - \frac{1}{3}\overrightarrow {AC} \);                       
C. \(\overrightarrow {BC} = \frac{3}{4}\overrightarrow {AC} \);                
D. \(\overrightarrow {BC} = - 3\overrightarrow {AB} \).

Lời giải

Đáp án đúng là: C

Từ hình vẽ, ta có \[AB = \frac{1}{4}AC\], \(BC = \frac{3}{4}AC,\,\,BC = 3AB\).

Mà hai vectơ \(\overrightarrow {AC} \)\[\overrightarrow {AB} \] cùng hướng nên \[\overrightarrow {AB} = \frac{1}{4}\overrightarrow {AC} \], do đó đáp án A và B sai.

Hai vectơ \(\overrightarrow {BC} \)\[\overrightarrow {AC} \] cùng hướng nên \(\overrightarrow {BC} = \frac{3}{4}\overrightarrow {AC} \), do đó đáp án C đúng.

Hai vectơ \(\overrightarrow {BC} \)\[\overrightarrow {AB} \] cùng hướng nên \(\overrightarrow {BC} = 3\overrightarrow {AB} \), do đó đáp án D sai.

Lời giải

Đáp án đúng là: B

Hai vectơ \(\overrightarrow u \)\(\overrightarrow v \) vuông góc với nhau nên \(\overrightarrow u \cdot \overrightarrow v = 0\).

\( \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right) \cdot \left( {\overrightarrow a + \overrightarrow b } \right) = 0\)\( \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} + \frac{2}{5}\overrightarrow a \cdot \overrightarrow b - 3\overrightarrow a \cdot \overrightarrow b - 3{\overrightarrow b ^2} = 0\)

\( \Leftrightarrow \frac{2}{5}{\left| {\overrightarrow a } \right|^2} - \frac{{13}}{5}\overrightarrow a \cdot \overrightarrow b - 3{\left| {\overrightarrow b } \right|^2} = 0\)\( \Leftrightarrow \overrightarrow a \cdot \overrightarrow b = - 1 \Leftrightarrow \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \alpha = - 1\)\( \Leftrightarrow \cos \alpha = - 1\)

Do đó, \(\alpha = 180^\circ \).

Câu 4

A. 7;                            
B. 129;                            
C. 49;                               
D. \(\sqrt {129} \).  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) (\(\overrightarrow b \) khác \(\overrightarrow 0 \)) cùng phương khi và chỉ khi có một số \(k\) sao cho 

A. \(\overrightarrow a \ne k\overrightarrow b \); 
B. \(\overrightarrow a = k\overrightarrow b \);     
C. \(\overrightarrow a + \overrightarrow b = k\);     
D. \(\overrightarrow a - \overrightarrow b = k\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hình vuông \(ABCD\) có cạnh bằng 8. Độ dài của vectơ \(\overrightarrow {AB} + \overrightarrow {AD} \)

A. 8;                            
B. 16;                              
C. \(8\sqrt 2 \);    
D. \(2\sqrt 8 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \);                                   
B. \(\overrightarrow {DA} + \overrightarrow {DC} = \overrightarrow {DB} \);                                   
C. \(\overrightarrow {AC} = \overrightarrow {BD} \); 
D. \(\overrightarrow {AB} = \overrightarrow {DC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP