Câu hỏi:

05/11/2025 156 Lưu

Cho hai đường thẳng chéo nhau \(a,\,\,b\) và điểm \(M\) ở ngoài \(a\) và ngoài \(b\). Có nhiều nhất bao nhiêu đường thẳng qua \(M\) cắt cả \(a\)\(b\)?

A. \(1\).                            
B. \(2\).                        
C. \(0\).                                 
D. Vô số.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Cho hai đường thẳng chéo nhau \(a,\,\,b\)  và điểm \(M\) ở ngoài \(a\) và ngoài \(b\). Có nhiều nhất bao nhiêu đường thẳng qua \(M\) cắt cả \(a\) và  \(b\)? A. \(1\).	B. \(2\).	C. \(0\).	D. Vô số. (ảnh 1)

Gọi \((P)\) là mặt phẳng tạo bởi đường thẳng \(a\)\(M\); \((Q)\) là mặt phẳng tạo bởi đường thẳng \(b\)\(M\).

Giả sử \(c\) là đường thẳng qua \(M\) cắt cả \(a\)\(b\).

Suy ra \[\left\{ \begin{array}{l}c \in (P)\\c \in (Q)\end{array} \right. \Rightarrow c = (P) \cap (Q)\].

Vậy chỉ có 1 đường thẳng qua \(M\) cắt cả \(a\)\(b\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB} = 3\overrightarrow {AC} \); 
B. \(\overrightarrow {AB} = - \frac{1}{3}\overrightarrow {AC} \);                       
C. \(\overrightarrow {BC} = \frac{3}{4}\overrightarrow {AC} \);                
D. \(\overrightarrow {BC} = - 3\overrightarrow {AB} \).

Lời giải

Đáp án đúng là: C

Từ hình vẽ, ta có \[AB = \frac{1}{4}AC\], \(BC = \frac{3}{4}AC,\,\,BC = 3AB\).

Mà hai vectơ \(\overrightarrow {AC} \)\[\overrightarrow {AB} \] cùng hướng nên \[\overrightarrow {AB} = \frac{1}{4}\overrightarrow {AC} \], do đó đáp án A và B sai.

Hai vectơ \(\overrightarrow {BC} \)\[\overrightarrow {AC} \] cùng hướng nên \(\overrightarrow {BC} = \frac{3}{4}\overrightarrow {AC} \), do đó đáp án C đúng.

Hai vectơ \(\overrightarrow {BC} \)\[\overrightarrow {AB} \] cùng hướng nên \(\overrightarrow {BC} = 3\overrightarrow {AB} \), do đó đáp án D sai.

Câu 2

A. 7;                            
B. 129;                            
C. 49;                               
D. \(\sqrt {129} \).  

Lời giải

Đáp án đúng là: A

Áp dụng định lí côsin trong tam giác \(ABC\), ta có:

\(A{C^2} = B{C^2} + A{B^2} - 2BC \cdot AB \cdot \cos B = {8^2} + {5^2} - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ = 49 \Rightarrow AC = 7\).

Câu 3

Cho hình vuông \(ABCD\) có cạnh bằng 8. Độ dài của vectơ \(\overrightarrow {AB} + \overrightarrow {AD} \)

A. 8;                            
B. 16;                              
C. \(8\sqrt 2 \);    
D. \(2\sqrt 8 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) (\(\overrightarrow b \) khác \(\overrightarrow 0 \)) cùng phương khi và chỉ khi có một số \(k\) sao cho 

A. \(\overrightarrow a \ne k\overrightarrow b \); 
B. \(\overrightarrow a = k\overrightarrow b \);     
C. \(\overrightarrow a + \overrightarrow b = k\);     
D. \(\overrightarrow a - \overrightarrow b = k\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 30;                          
B. 60;                              
C. – 30;                               
D. – 60.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP