Cho tứ diện \(ABCD\), \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(AC\). Mặt phẳng \((\alpha )\) qua \(MN\) cắt tứ diện \(ABCD\) theo thiết diện là đa giác \((T)\). Khẳng định nào sau đây đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: D

• Trường hợp \((\alpha ) \cap AD = K\).
Khi đó \((T)\) là tam giác \(MNK\). Do đó A và C sai.
• Trường hợp \((\alpha ) \cap (BCD) = IJ\), với \(I \in BD,\,\,J \in CD;\,\,I,\,\,J\) không trùng \(D\).
Khi đó \((T)\) là tứ giác. Do đó D đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Từ hình vẽ, ta có \[AB = \frac{1}{4}AC\], \(BC = \frac{3}{4}AC,\,\,BC = 3AB\).
Mà hai vectơ \(\overrightarrow {AC} \) và \[\overrightarrow {AB} \] cùng hướng nên \[\overrightarrow {AB} = \frac{1}{4}\overrightarrow {AC} \], do đó đáp án A và B sai.
Hai vectơ \(\overrightarrow {BC} \) và \[\overrightarrow {AC} \] cùng hướng nên \(\overrightarrow {BC} = \frac{3}{4}\overrightarrow {AC} \), do đó đáp án C đúng.
Hai vectơ \(\overrightarrow {BC} \) và \[\overrightarrow {AB} \] cùng hướng nên \(\overrightarrow {BC} = 3\overrightarrow {AB} \), do đó đáp án D sai.
Câu 2
Lời giải
Đáp án đúng là: A
Áp dụng định lí côsin trong tam giác \(ABC\), ta có:
\(A{C^2} = B{C^2} + A{B^2} - 2BC \cdot AB \cdot \cos B = {8^2} + {5^2} - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ = 49 \Rightarrow AC = 7\).
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
