Cho hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) có điểm đặt A tạo với nhau một góc \(45^\circ \), biết rằng cường độ của hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) lần lượt bằng 60 N, 90 N. Tính cường độ tổng hợp của hai lực trên (kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Trả lời: 139,06.
Đặt \(\overrightarrow {{F_1}} = \overrightarrow {AB} ,\overrightarrow {{F_2}} = \overrightarrow {AD} \).
Vẽ hình bình hành \(ABCD\).
Ta có \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \).
Vì \(\widehat {BAD} = 45^\circ \)\( \Rightarrow \widehat {ABC} = 135^\circ \), \(AD = BC = 90\).
Áp dụng định lí côsin ta có:
\(A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos 135^\circ \)
\(A{C^2} = {60^2} + {90^2} - 2.60.90.\cos 135^\circ \approx 19336,75\).
Suy ra \(AC \approx 139,06\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} \).
B. \(\overrightarrow {AG} = \frac{1}{3}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \).
Lời giải
Đáp án đúng là: C
Có \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\).
Lời giải
Trả lời: 2,83.
Vì \(O\) là tâm của hình vuông nên \(\overrightarrow {OA} = \overrightarrow {CO} \). Suy ra \(\overrightarrow {OA} - \overrightarrow {CB} = \overrightarrow {CO} - \overrightarrow {CB} = \overrightarrow {BO} \).
Vậy \[\left| {\overrightarrow {OA} - \overrightarrow {CB} } \right| = \left| {\overrightarrow {BO} } \right| = \frac{{4\sqrt 2 }}{2} \approx 2,83\].
Câu 3
A. \(\overrightarrow {AM} + \overrightarrow {MB} + \overrightarrow {BA} = \overrightarrow 0 \).
B. \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow {AB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
