Câu hỏi:

05/11/2025 25 Lưu

Một gian hàng trưng bày bàn và ghế rộng 60 m2. Diện tích để kê một chiếc ghế là 0,5 m2, một chiếc bàn là 1,2 m2. Gọi \(x\) là số chiếc ghế, \(y\) là số chiếc bàn được kê. Biết diện tích mặt sàn dành cho lưu thông tối thiểu là 12 m2. Giả sử gian hàng đã kê 10 chiếc bàn thì phần diện tích cho phép còn lại có thể kê được nhiều nhất bao nhiêu chiếc ghế?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 72

Tổng diện tích để kê \(x\) chiếc ghế, \(y\) chiếc bàn là \(0,5x + 1,2y\).

Vì diện tích mặt sàn dành cho lưu thông tối thiểu là 12 m2 nên diện tích diện tích cho gian hàng trưng bày là \(0,5x + 1,2y \le 48\).

Vì đã kê 10 chiếc bàn nên \(0,5x + 1,2.10 \le 48\)\( \Leftrightarrow x \le 72\).

Do đó có thể kê nhiều nhất 72 chiếc ghế.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1,88

Ta có \({\left| {\overrightarrow a  + \overrightarrow b } \right|^2} = {\overrightarrow a ^2} + 2.\overrightarrow a .\overrightarrow b  + {\overrightarrow b ^2}\)\( = {\overrightarrow a ^2} + 2.\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right) + {\overrightarrow b ^2}\)\( = {2^2} + 2.2.\sqrt 3 .\cos 120^\circ  + {\left( {\sqrt 3 } \right)^2}\)

\( = 7 - 2\sqrt 3  \approx 3,54\).

Suy ra \(\left| {\overrightarrow a  + \overrightarrow b } \right| \approx 1,88\).

Lời giải

a) Đ, b) S, c) S, d) Đ

a) \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC}  = 2\overrightarrow {AO} \).

b) M là trung điểm của \(AB\) nên \(\overrightarrow {DA}  + \overrightarrow {DB}  = 2\overrightarrow {DM} \).

c) \[\overrightarrow {AB} .\overrightarrow {CA}  =  - \overrightarrow {AB} .\overrightarrow {AC}  =  - \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) =  - {a^2}.\cos 45^\circ  =  - \frac{{{a^2}\sqrt 2 }}{2}\].

d) Có \(\overrightarrow {AD} .\overrightarrow {BD}  = \overrightarrow {DA} .\overrightarrow {DB} \)\( = \left| {\overrightarrow {DA} } \right|.\left| {\overrightarrow {DB} } \right|.\cos \left( {\overrightarrow {DA} ,\overrightarrow {DB} } \right)\)\( = a.a\sqrt 2 .\cos 45^\circ  = {a^2}\).

\(\overrightarrow {OM} .\overrightarrow {AC}  = \left| {\overrightarrow {OM} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {OM} ,\overrightarrow {AC} } \right)\)\( = \frac{a}{2}.a\sqrt 2 .\cos 135^\circ  =  - \frac{1}{2}{a^2}\).

Suy ra \(\overrightarrow {AD} .\overrightarrow {BD}  + \overrightarrow {OM} .\overrightarrow {AC}  = \frac{{{a^2}}}{2}\).

Câu 4

A.\(\frac{a}{{\sin A}} = 2R\).    

B. \(\sin A = \frac{a}{{2R}}\). 

C. \(b.\sin B = 2R\).
D. \(\sin C = \frac{{c.\sin A}}{a}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow {BC}  =  - 2\overrightarrow {BA} \).  

B. \(\overrightarrow {BC}  =  - 2\overrightarrow {AB} \). 
C. \(\overrightarrow {BC}  = 4\overrightarrow {AB} \).  
D. \(\overrightarrow {BC}  = \overrightarrow {AB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(N\left( { - 1\,;1} \right)\). 

B.\(Q\left( { - 1\,;0} \right)\). 
C.\(P\left( {1\,; - 3} \right)\). 
D. \(M\left( {0\,;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP