Câu hỏi:

06/11/2025 75 Lưu

Cho hàm số \(y =  - {x^2} + 2x - 5\). Khi đó:

a) Tập xác định: \(D = \mathbb{R}\).

b) Tọa độ đỉnh \(I\) của parabol: \(I(1; - 4)\).

c) Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).

d) Giá trị lớn nhất của hàm số là \({y_{\max }} =  - 4\), khi \(x = 2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) Đ, c) Đ, d) S

\(y =  - {x^2} + 2x - 5;(a =  - 1,b = 2,c =  - 5)\).

a) Tập xác định: \(D = \mathbb{R}\).

b) Tọa độ đỉnh \(I\) của parabol:

\({x_I} =  - \frac{b}{{2a}} = 1,{y_I} =  - {1^2} + 2.1 - 5 =  - 4\) hay \(I(1; - 4)\).

c) Định hướng cho bảng biến thiên: Do \(a =  - 1 < 0\) nên bề lõm parabol hướng xuống.

Bảng biến thiên:

Cho hàm số y =  - x mũ 2 + 2x - 5. Khi đó:  a) Tập xác định: D =R.  b) Tọa độ đỉnh I của parabol: I (1; - 4). (ảnh 1)

Kết luận:

- Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).

- Giá trị lớn nhất của hàm số là \({y_{\max }} =  - 4\), khi \(x = 1\). (Hàm số không có giá trị nhỏ nhất).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1

Ta có \(A = \frac{{4\tan x + 2\cot x}}{{\tan x + \cot x + 3}} = 2\)

\( \Leftrightarrow 4\tan x + 2\cot x = 2\tan x + 2\cot x + 6\)

\( \Leftrightarrow \tan x = 3\)

\( \Leftrightarrow \frac{{\sin x}}{{\cos x}} = 3\)\( \Leftrightarrow \sin x = 3\cos x\).

Do đó \(P = \frac{{2\sin x + \cos x}}{{3\sin x - 2\cos x}}\)\( = \frac{{6\cos x + \cos x}}{{9\cos x - 2\cos x}}\)\( = \frac{{7\cos x}}{{7\cos x}} = 1\).

Lời giải

a) Đ, b) S, c) S, d) Đ

a) Gọi \(G\) là trọng tâm của tam giác \(ABC\), ta có : \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \vec 0 \Rightarrow \overrightarrow {GB}  + \overrightarrow {GC}  =  - \overrightarrow {GA} \)

b) \(\overrightarrow {BA}  + \overrightarrow {BC}  = 2\overrightarrow {BN} \).

c) \(\overrightarrow {AB}  = \overrightarrow {GB}  - \overrightarrow {GA}  = \overrightarrow {GB}  + (\overrightarrow {GB}  + \overrightarrow {GC} )\)\( = 2\overrightarrow {GB}  + \overrightarrow {GC}  =  - 2 \cdot \frac{2}{3} \cdot \overrightarrow {BN}  - \frac{2}{3}\overrightarrow {CP} \).

d) \(\overrightarrow {BC}  = \overrightarrow {GC}  - \overrightarrow {GB}  =  =  - \frac{2}{3}\overrightarrow {CP}  + \frac{2}{3}\overrightarrow {BN} {\rm{. }}\)

Câu 3

A. \(8,8\) phút. 

B. \(9\) phút.  
C. \(9,5\) phút. 
D. \(10\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP