Câu hỏi:

15/11/2025 35 Lưu

Trong các câu sau, câu nào không phải là mệnh đề?

A. Hà Nội là thủ đô của Việt Nam;
B. Hình chữ nhật có hai đường chéo vuông góc với nhau;
C. 2 là số nguyên tố;
D. Hôm nay là thứ mấy?.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Câu “Hà Nội là thủ đô của Việt Nam” là khẳng định đúng. Do đó “Hà Nội là thủ đô của Việt Nam” là mệnh đề.

Câu “Hình chữ nhật có hai đường chéo vuông góc với nhau” là khẳng định sai. Do đó “Hình chữ nhật có hai đường chéo vuông góc với nhau” là mệnh đề.

Câu “2 là số nguyên tố” là khẳng định đúng. Do đó “2 là số nguyên tố” là mệnh đề.

Câu “Hôm nay là thứ mấy?” là câu hỏi nên không là mệnh đề.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{a}{{\sin \alpha }} = \frac{b}{{\sin \beta }} = \frac{c}{{\sin \varphi }}\);                                  
B. \({a^2} = {b^2} + {c^2} - 2bc \cdot \cos \alpha \);
C. \({a^2} + {c^2} = {b^2} + 2ac \cdot \cos \beta \);         
D. \({a^2} = {b^2} - {c^2} + 2bc \cdot \cos \alpha \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Áp dụng định lí côsin ta có: \({a^2} = {b^2} + {c^2} - 2bc \cdot \cos \alpha \).

Vậy khẳng định \({a^2} = {b^2} - {c^2} + 2bc \cdot \cos \alpha \) là sai.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Xét tam giác \(ABC\). Áp dụng định lí cosin cho tam giác \(ABC\) ta có:

\(A{B^2} = A{C^2} + B{C^2} - 2AC.BC.cosC\)

\( \Leftrightarrow A{B^2} = {200^2} + {180^2} - 2.200.180.cos{60^o}\)

\( \Leftrightarrow A{B^2} = 36400\)

\( \Leftrightarrow AB = 20\sqrt {91} \).

Vậy \(AB = 20\sqrt {91} \,\,\left( m \right)\).

Câu 3

A. \(79^\circ \);            
B. \(78^\circ \);                
C. \(77^\circ \);                                    
D. \(76^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Giá của vectơ \(\overrightarrow {AM} \) là đường trung trực của đoạn thẳng \(AB\);
B. Điểm đầu của vectơ \(\overrightarrow {AM} \)\(M\);
C. Điểm cuối của vectơ \(\overrightarrow {BA} \)\(B\);
D. Giá của vectơ \(\overrightarrow {MB} \) là đường thẳng \(AB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left\{ \begin{array}{l}x - y > 4\\2x + y < 19\end{array} \right.\);                                                                
B. \(\left\{ \begin{array}{l}x - 2y \le 0\\2x + y < 19\end{array} \right.\);
C. \(\left\{ \begin{array}{l}{x^2} - y > 0\\x + y < 6\end{array} \right.\);                                                                
D. \(\left\{ \begin{array}{l}x - y - 3 > 4\\2x + y + 2 < 19\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP