Miền nghiệm của bất phương trình \(x - 2y + 4 < 0\) là phần không bị gạch trong hình vẽ nào dưới đây
Miền nghiệm của bất phương trình \(x - 2y + 4 < 0\) là phần không bị gạch trong hình vẽ nào dưới đây
A.
B. 

Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Vẽ đường thẳng \(d:x - 2y + 4 = 0\).
Đường thẳng \(d\) là đường thẳng đi qua \(A(0;\,2)\) và \(B( - 4;\,0)\).
Xét điểm \(O(0;\,0)\) ta có \(0 - 2.0 + 4 > 0\) vì vậy điểm \(O(0;\,0)\) không là nghiệm của bất phương trình.
Suy ra miền nghiệm của bất phương trình đã cho là nửa mặt phẳng có bờ đường thẳng \(x - 2y + 4 = 0\) và không chứa điểm \(O\) và không kể đường thẳng \(d\).
Vì vậy hình vẽ ở đáp án D biểu diễn miền nghiệm của bất phương trình \(x - 2y + 4 < 0\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Xét tam giác \(ABC\). Áp dụng định lí cosin cho tam giác \(ABC\) ta có:
\(A{B^2} = A{C^2} + B{C^2} - 2AC.BC.cosC\)
\( \Leftrightarrow A{B^2} = {200^2} + {180^2} - 2.200.180.cos{60^o}\)
\( \Leftrightarrow A{B^2} = 36400\)
\( \Leftrightarrow AB = 20\sqrt {91} \).
Vậy \(AB = 20\sqrt {91} \,\,\left( m \right)\).
Lời giải
Kí hiệu như hình vẽ trên với \(A\), \(C\) lần lượt là đỉnh và chân của tòa nhà; \(B\) và \(D\) lần lượt là đỉnh và gốc của cây.
Xét tam giác \(ABC\)
Do \(\left\{ \begin{array}{l}\widehat {BCD} = 24^\circ \\\widehat {BCD} + \widehat {ACB} = 90^\circ \end{array} \right. \Rightarrow \widehat {ACB} = 66^\circ \).
Do \(\left\{ \begin{array}{l}\widehat {xAB} = 60^\circ \\\widehat {xAB} + \widehat {CAB} = 90^\circ \end{array} \right. \Rightarrow \widehat {CAB} = 30^\circ \).
Suy ra \(\widehat {ABC} = 180^\circ - \left( {66^\circ + 30^\circ } \right) = 84^\circ \).
Áp dụng định lí sin ta có:
\(\frac{{BC}}{{\sin 30^\circ }} = \frac{{AC}}{{\sin 84^\circ }} \Rightarrow BC = \frac{{AC \cdot \sin 30^\circ }}{{\sin 84^\circ }} = \frac{{155 \cdot \sin 30^\circ }}{{\sin 84^\circ }} \approx 77,93\) (m).
Xét tam giác \(CBD\) vuông tại \(D\)
Ta có: \(\sin \widehat {BCD} = \frac{{BD}}{{BC}} \Rightarrow \sin 24^\circ \approx \frac{{BD}}{{77,93}} \Rightarrow BD \approx 77,93 \cdot \sin 24^\circ \approx 31,70\) (m)
Vậy chiều cao của cái cây khoảng 31,70 mét.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

