Câu hỏi:

15/11/2025 8 Lưu

(1 điểm) Đường dây cao thế nối thẳng từ vị trí \(A\) đến vị trí \(B\) dài 15 km, từ vị trí \(A\) đến vị trí \(C\) dài 9 km, góc tạo bởi hai đường dây trên bằng \(86^\circ \). Tính khoảng cách từ vị trí \(B\) đến vị trí \(C\) (h.57). (làm tròn kết quả đến hàng phần trăm)

Đường dây cao thế nối thẳng từ vị (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét tam giác \(ABC\)

Áp dụng định lí côsin ta có:

\(B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC \cdot \cos \widehat {ABC} = {15^2} + {9^2} - 2 \cdot 15 \cdot 9 \cdot \cos 86^\circ \approx 287,17\)

\( \Rightarrow BC \approx 16,95\) (m)

Vậy khoảng cách từ vị trí \(B\) đến vị trí \(C\) là khoảng 16,95 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB} \)\(\overrightarrow {BI} \) cùng hướng;                                                         
B. \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng hướng;
C. \(\overrightarrow {AI} \)\(\overrightarrow {IB} \) ngược hướng;                                                       
D. \(\overrightarrow {AI} \)\(\overrightarrow {BI} \) không cùng phương.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

Ta có: \(A\), \(I\), \(B\) cùng thuộc đường thẳng \(AB\) nên \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng phương.

Và chúng cùng hướng từ trái sang phải.

Do đó, \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng hướng.

Câu 2

A. \(\sin x + {\rm{cos}}x = 1\);                               
B. \(1 + {\sin ^2}x = \frac{1}{{{{\cot }^2}x}}\);         
C. \({\tan ^2}x + 1 = \frac{1}{{{{\cos }^2}x}}\);                                                         
D. \[\tan x = \frac{{{\rm{cos}}\,x}}{{{\mathop{\rm s}\nolimits} {\rm{in}}\,x}}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có:

\({\sin ^2}x + {\rm{co}}{{\rm{s}}^2}x = 1\). Do đó A sai.

\(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\). Do đó B sai.

\({\tan ^2}x + 1 = \frac{1}{{{{\cos }^2}x}}\). Do đó C đúng.

\[\tan x = \frac{{{\mathop{\rm s}\nolimits} {\rm{in}}\,x}}{{{\rm{cos}}\,x}}\]. Do đó D sai.

Câu 3

A. Hai tam giác bằng nhau là điều kiện cần để diện tích của chúng bằng nhau;
B. Hai tam giác bằng nhau là điều kiện đủ để diện tích của chúng bằng nhau;
C. Hai tam giác có diện tích bằng nhau là điều kiện đủ để chúng bằng nhau;
D. Hai tam giác có diện tích bằng nhau là điều kiện cần và đủ để chúng bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(45^\circ \);           
B. \(62^\circ \);               
C. \(63^\circ \);                                 
D. \(48^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Tồn tại một số nguyên \(x\) để \(x\) chia hết cho 5;
B. Mọi số nguyên \(x\) chia hết cho 5;
C. Tồn tại một số nguyên \(x\) để \(x\) không chia hết cho 5;
D. Mọi số nguyên \(x\) không chia hết cho 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(DF = \frac{{a\sqrt {13} }}{4}\);              
B. \(DF = \frac{{a\sqrt 5 }}{4}\);                                    
C.\(DF = \frac{{a\sqrt 3 }}{2}\);                                    
D. \(DF = \frac{{3a}}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP