Câu hỏi:

15/11/2025 18 Lưu

Cho hệ bất phương trình: \(\left\{ \begin{array}{l}mx - 2y \le 5\\\left( {m - 1} \right)y \ge 3\end{array} \right.\). Tìm điều kiện của \(m\) để cặp số \(\left( {1;\,\,1} \right)\) là nghiệm của hệ bất phương trình. 

A. \(\left[ {2;5} \right]\);         
B. \(\left[ {2;7} \right]\);                      
C. \(\left( {4;5} \right)\);     
D. \(\left[ {4;7} \right]\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Thay \(x = 1\)\(y = 1\) vào hệ bất phương trình ta được:

\(\left\{ \begin{array}{l}m.1 - 2.1 \le 5\\\left( {m - 1} \right).1 \ge 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le 7\\m \ge 4\end{array} \right. \Rightarrow m \in \left[ {4;7} \right]\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {MA} = \frac{1}{3}\overrightarrow {MB} \);                      
B. \(\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \);             
C. \(\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \);                       
D. \(\overrightarrow {MB} = - 3\overrightarrow {MA} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: B (ảnh 1)

\[AM = \frac{1}{4}AB\] và hai vectơ \(\overrightarrow {AM} ,\,\,\overrightarrow {AB} \) cùng hướng nên \(\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \), do đó đáp án B đúng.

Ta có: \[MA = \frac{1}{3}MB\] và hai vectơ \(\overrightarrow {MA} ,\,\,\overrightarrow {MB} \) ngược hướng nên \(\overrightarrow {MA} = - \frac{1}{3}\overrightarrow {MB} \) hay \(\overrightarrow {MB} = - 3\overrightarrow {MA} \), do đó đáp án A sai và đáp án D đúng.

\[BM = \frac{3}{4}BA\] và hai vectơ \(\overrightarrow {BM} ,\,\,\overrightarrow {BA} \) cùng hướng nên \(\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \), do đó đáp án C đúng.

Câu 2

A. \(\overrightarrow {IC} = - 2\overrightarrow {AB} + \overrightarrow {AC} \);                                 
B. \(\overrightarrow {IC} = 2\overrightarrow {AB} + \overrightarrow {AC} \);
C. \(\overrightarrow {IC} = - \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \);                                                                         
D. \(\overrightarrow {IC} = \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có \[\overrightarrow {IA} = - 2\overrightarrow {IB} \]\[ \Rightarrow \overrightarrow {IA} = - \frac{2}{3}\overrightarrow {AB} \].

Vậy \[\overrightarrow {IC} = \overrightarrow {IA} + \overrightarrow {AC} = - \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \].

Câu 3

A. \(2a\);                                  
B. \(a\sqrt 3 \);       
C. \(2a\sqrt 3 \);        
D. \(a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[\overrightarrow {AB} + \overrightarrow {BC} - \overrightarrow {BD} = \overrightarrow 0 \];                                 
B. \[\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 \]; 
C. \[\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CA} = \overrightarrow 0 \];                                 
D. \[\overrightarrow {AD} - \overrightarrow {BC} = \overrightarrow 0 \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[D = \left( {1;\, + \infty } \right)\];           
B. \[D = \left( {1;\,6} \right)\];          
C. \[D = \left[ {1;\,6} \right]\];                      
D. \[D = \mathbb{R}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP