Cho tam giác \(ABC\) có \(AB = 2\,\,cm\), \(\widehat {ABC} = 60^\circ \), \(\widehat {BAC} = 75^\circ \). Diện tích tam giác \(ABC\) gần nhất với giá trị nào sau đây?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A

Xét tam giác \(ABC\), có:
\(\widehat A + \widehat B + \widehat C = 180^\circ \Rightarrow \widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {75^\circ + 60^\circ } \right) = 45^\circ \)(định lí tổng ba góc trong tam giác)
Áp dụng định lí sin trong tam giác \(ABC\), ta được:
\(\frac{{BC}}{{\sin A}} = \frac{{AB}}{{\sin C}} \Leftrightarrow BC = \frac{{AB.\sin A}}{{\sin C}} = \frac{{2.\sin 75^\circ }}{{\sin 45^\circ }} = 1 + \sqrt 3 \,\,\left( {cm} \right)\).
Diện tích tam giác \(ABC\) bằng:
\(S = \frac{1}{2}AB.BC.\sin B = \frac{1}{2}.2.\left( {1 + \sqrt 3 } \right).\sin 60^\circ = \frac{{3 + \sqrt 3 }}{2} \approx 2,37\,\,\left( {c{m^2}} \right).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Vì \[AM = \frac{1}{4}AB\] và hai vectơ \(\overrightarrow {AM} ,\,\,\overrightarrow {AB} \) cùng hướng nên \(\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \), do đó đáp án B đúng.
Ta có: \[MA = \frac{1}{3}MB\] và hai vectơ \(\overrightarrow {MA} ,\,\,\overrightarrow {MB} \) ngược hướng nên \(\overrightarrow {MA} = - \frac{1}{3}\overrightarrow {MB} \) hay \(\overrightarrow {MB} = - 3\overrightarrow {MA} \), do đó đáp án A sai và đáp án D đúng.
\[BM = \frac{3}{4}BA\] và hai vectơ \(\overrightarrow {BM} ,\,\,\overrightarrow {BA} \) cùng hướng nên \(\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \), do đó đáp án C đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có \[\overrightarrow {IA} = - 2\overrightarrow {IB} \]\[ \Rightarrow \overrightarrow {IA} = - \frac{2}{3}\overrightarrow {AB} \].
Vậy \[\overrightarrow {IC} = \overrightarrow {IA} + \overrightarrow {AC} = - \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
