Cho tam giác \(ABC\) có điểm \(M\) thỏa mãn điều kiện \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \). Điểm \(M\) thỏa mãn bài toán khi
Quảng cáo
Trả lời:
Đáp án đúng là: D
Gọi \(G\) là trọng tâm tam giác \(ABC\) ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
Do đó, \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} \).
Nên \(M\) trùng với \(G\) hay \(M\) là trọng tâm tam giác \(ABC\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Từ hình vẽ, ta có \[AB = \frac{1}{4}AC\], \(BC = \frac{3}{4}AC,\,\,BC = 3AB\).
Mà hai vectơ \(\overrightarrow {AC} \) và \[\overrightarrow {AB} \] cùng hướng nên \[\overrightarrow {AB} = \frac{1}{4}\overrightarrow {AC} \], do đó đáp án A và B sai.
Hai vectơ \(\overrightarrow {BC} \) và \[\overrightarrow {AC} \] cùng hướng nên \(\overrightarrow {BC} = \frac{3}{4}\overrightarrow {AC} \), do đó đáp án C đúng.
Hai vectơ \(\overrightarrow {BC} \) và \[\overrightarrow {AB} \] cùng hướng nên \(\overrightarrow {BC} = 3\overrightarrow {AB} \), do đó đáp án D sai.
Câu 2
Lời giải
Đáp án đúng là: A
Áp dụng định lí côsin trong tam giác \(ABC\), ta có:
\(A{C^2} = B{C^2} + A{B^2} - 2BC \cdot AB \cdot \cos B = {8^2} + {5^2} - 2 \cdot 8 \cdot 5 \cdot \cos 60^\circ = 49 \Rightarrow AC = 7\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
