Câu hỏi:

16/11/2025 16 Lưu

II. Tự luận (3 điểm)

 (1 điểm) Một xí nghiệp có ba nhóm máy I, II, III dùng để sản xuất ra hai loại sản phẩm \(A\) \(B\). Để sản xuất một đơn vị sản phẩm mỗi loại phải lần lượt dùng các máy thuộc các nhóm khác nhau. Số máy trong một nhóm và số máy của từng nhóm cần thiết để sản xuất ra một đơn vị sản phẩm thuộc mỗi loại được cho trong bảng sau:

Nhóm

Số máy trong mỗi nhóm

Số máy trong từng nhóm để sản xuất ra một đơn vị sản phẩm

Loại \(A\)

Loại \(B\)

I

15

3

3

II

4

0

2

III

12

2

4

 

Một đơn vị sản phẩm loại \(A\) lãi 40 nghìn đồng, một đơn vị sản phẩm loại \(B\) lãi 50 nghìn đồng. Hỏi xí nghiệp cần sản xuất bao nhiêu sản phẩm mỗi loại để có lãi cao nhất?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số sản phẩm loại \(A\) cần sản xuất là \(x\); số sản phẩm loại \(B\) cần sản xuất là \(y\)

(\(x,y \ge 0\)).

Số máy nhóm I cần sử dụng là: \(3x + 3y\).

Số máy nhóm II cần sử dụng là: \(2y\).

Số máy nhóm III cần sử dụng là: \(2x + 4y\).

Lãi suất thu được là: \(F(x;y) = 40x + 50y\) (nghìn đồng).    

Bài toán trở thành:

Tìm \(x,y\) thỏa mãn hệ bất phương trình \(\left\{ {\begin{array}{*{20}{l}}{x \ge 0}\\{0 \le y \le 2}\\{x + y \le 5}\\{x + 2y \le 6}\end{array}} \right.\) sao cho \(F(x;y) = 40x + 50y\) lớn nhất.

Vẽ các đường thẳng \(\left( {{d_1}} \right):y = 2,\left( {{d_2}} \right):x + y = 5,\left( {{d_3}} \right):x + 2y = 6\). Ta có miền nghiệm của bất phương trình là miền ngũ giác \(EABCD\) với \(E\left( {0;\,0} \right),\,A\left( {0;\,2} \right)\), \(B\left( {2;\,2} \right)\), \(C\left( {4;\,\,1} \right)\), \(D\left( {5;\,0} \right)\).

Đáp án đúng là: B (ảnh 1)

Ta có \(F(0;\,\,0) = 0\), \(F(0;\,\,2) = 100\),\(F(2;\,\,2) = 180\),\(F(4;\,\,1) = 210\), \(F(5;\,\,0) = 200\).

\(F(x;y) = 40x + 50y\) đạt giá trị lớn nhất khi \(x = 4;y = 1\) nên phương án sản xuất 4 sản phẩm loại \(A\) và 1 sản phẩm loại \(B\) sẽ có lãi cao nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Hai vectơ \(\overrightarrow u \)\(\overrightarrow v \) vuông góc với nhau nên \(\overrightarrow u \cdot \overrightarrow v = 0\).

\( \Leftrightarrow \left( {\frac{2}{5}\overrightarrow a - 3\overrightarrow b } \right) \cdot \left( {\overrightarrow a + \overrightarrow b } \right) = 0\)\( \Leftrightarrow \frac{2}{5}{\overrightarrow a ^2} + \frac{2}{5}\overrightarrow a \cdot \overrightarrow b - 3\overrightarrow a \cdot \overrightarrow b - 3{\overrightarrow b ^2} = 0\)

\( \Leftrightarrow \frac{2}{5}{\left| {\overrightarrow a } \right|^2} - \frac{{13}}{5}\overrightarrow a \cdot \overrightarrow b - 3{\left| {\overrightarrow b } \right|^2} = 0\)\( \Leftrightarrow \overrightarrow a \cdot \overrightarrow b = - 1 \Leftrightarrow \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \alpha = - 1\)\( \Leftrightarrow \cos \alpha = - 1\)

Do đó, \(\alpha = 180^\circ \).

Câu 2

Hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) (\(\overrightarrow b \) khác \(\overrightarrow 0 \)) cùng phương khi và chỉ khi có một số \(k\) sao cho 

A. \(\overrightarrow a \ne k\overrightarrow b \); 
B. \(\overrightarrow a = k\overrightarrow b \);     
C. \(\overrightarrow a + \overrightarrow b = k\);     
D. \(\overrightarrow a - \overrightarrow b = k\).

Lời giải

Đáp án đúng là: B

Hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) (\(\overrightarrow b \) khác \(\overrightarrow 0 \)) cùng phương khi và chỉ khi có một số \(k\) sao cho \(\overrightarrow a = k\overrightarrow b \).

Câu 3

A. \[\frac{a}{{\sin A}} = 2R\,\];                         
B. \[\sin A = \frac{a}{{2R}}\,\];      
C. \[b\sin B = 2R\,\];      
D.\[\sin C = \frac{{c\sin A}}{a}\,\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Mệnh đề “\(\exists x \in \mathbb{N},\,{x^2} = 10\)” khẳng định rằng

A. Bình phương của một số tự nhiên bằng 10;
B. Bình phương của một số \(x\) bằng 10;
C. Chỉ có một số tự nhiên mà bình phương của nó bằng 10;
D. Có ít nhất một số tự nhiên mà bình phương của nó bằng 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(A = \left\{ {x \in \mathbb{R}|\,2 \le x \le 5} \right\}\);                                     
B. \(A = \left\{ {2;\,\,5} \right\}\);                                     
C. \(A = \left\{ {x \in \mathbb{R}|\,2 < x < 5} \right\}\);                                     
D. \(A = \left\{ {x \in \mathbb{Z}|\,2 < x < 5} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP