Câu hỏi:

17/11/2025 3 Lưu

Cho tam giác \(ABC\)\[AB = 10,\,\,\widehat C = 45^\circ ,\,\,\widehat B = 60^\circ \]. Độ dài cạnh \(AC\)

A. \(5\sqrt 3 \);            
B. \(5\sqrt 6 \);              
C. \(10\sqrt 3 \); 
D. \(10\sqrt 6 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \), suy ra \(\cos A = - \cos \left( {B + C} \right) = - \left( { - \frac{{\sqrt 2 }}{2}} \right) = \frac{{\sqrt 2 }}{2}\) (hai góc bù nhau).

Theo định lí côsin trong tam giác \(ABC\), ta có:

\(B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC \cdot \cos A = {2^2} + {\left( {2\sqrt 2 } \right)^2} - 2 \cdot 2 \cdot 2\sqrt 2 .\frac{{\sqrt 2 }}{2} = 4\).

Suy ra \(BC = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x,\,y\) lần lượt là số radio kiểu một và kiểu hai sản xuất được trong một ngày. \(\left( {x,\,\,y \ge 0} \right)\)

radio kiểu một sản xuất trên dây chuyền một với công suất 45 radio/ngày, radio kiểu hai sản xuất trên dây chuyền hai với công suất 80 radio/ngày nên \(x \le 45,\,\,y \le 80\).

Sản xuất \(x\) chiếc radio kiểu một và \(y\) chiếc radio kiểu hai cần số linh kiện là \(12x + 9y\).

số linh kiện có thể sử dụng tối đa trong một ngày là 900 nên \(12x + 9y \le 900\) hay tương đương với \(4x + 3y \le 300\).

Tiền lãi thu được khi bán \(x\) chiếc radio kiểu một và \(y\) chiếc radio kiểu hai là \(T = 250\,\,000x + 180\,\,000y\) (đồng).

Khi đó, bài toán đã cho trở thành: Tìm \(\left( {x;\,\,y} \right)\) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\4x + 3y \le 300\end{array} \right.\)để \(T = 250\,\,000x + 180\,\,000y\) lớn nhất.

Biểu diễn miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\4x + 3y \le 300\end{array} \right.\) lên mặt phẳng tọa độ \(Oxy\) ta được:

Một công ty điện tử sản xuất hai kiểu radio trên hai dây chuyền độc lập. Radio kiểu một sản xuất trên dây chuyền một với công suất 45 radio/ngày, radio kiểu hai sản xuất trên dây chuyền hai với công suất 80 radio/ngày. (ảnh 1)

Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}0 \le x \le 45\\0 \le y \le 80\\4x + 3y \le 300\end{array} \right.\) là miền ngũ giác \(OABCD\) (kể cả biên) với \(O\left( {0;\,\,0} \right),\,\,A\left( {0;\,\,80} \right),\,\,B\left( {15;\,\,80} \right),\,\,C\left( {45;\,\,40} \right),\,\,D\left( {45;\,\,0} \right)\).

Người ta chứng minh được \(T = 250\,\,000x + 180\,\,000y\) đạt giá trị lớn nhất tại một trong các đỉnh của ngũ giác \(OABCD\).

Ta có: \(T\left( {0;\,\,0} \right) = 0\);

\(T\left( {0;\,\,80} \right) = 250\,\,000 \cdot 0 + 180\,\,000 \cdot 80 = 14\,\,400\,\,000\);

\(T\left( {15;\,\,80} \right) = 250\,\,000 \cdot 15 + 180\,\,000 \cdot 80 = 18\,\,150\,\,000\);

\(T\left( {45;\,\,40} \right) = 250\,\,000 \cdot 45 + 180\,\,000 \cdot 40 = 18\,\,450\,\,000\);

\(T\left( {45;\,\,0} \right) = 250\,\,000 \cdot 45 + 180\,\,000 \cdot 0 = 11\,\,250\,\,000\).

Do đó, \(T = 250\,\,000x + 180\,\,000y\) đạt giá trị lớn nhất tại \(\left( {x;\,\,y} \right) = \left( {45;\,\,40} \right)\).

Vậy cần sản xuất 45 radio kiểu một và 40 radio kiểu hai thì lãi thu được trong một ngày là lớn nhất.

Câu 2

A. \(\alpha \)\(\beta \) bù nhau;                            
B. \(\alpha \)\(\beta \) phụ nhau;                       
C. \(\alpha \)\(\beta \) bằng nhau;                 
D. \(\alpha \)\(\beta \) không có mối liên hệ.

Lời giải

Đáp án đúng là: B

Ta có \(\tan \alpha = \cot \beta \) khi \(\alpha \)\(\beta \) phụ nhau.

Câu 3

A. 0;                            
B. 1;                                 
C. \[\sqrt 3 \];  
D. – 1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({a^2} = {b^2} + {c^2} - 2bc \cdot \cos A\);     
B. \({a^2} = {b^2} + {c^2}\);                         
C. \({b^2} = {c^2} + {a^2} - 2ca \cdot \cos B\);                                  
D. \({c^2} = {b^2} + {a^2} - 2ba \cdot \cos C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {BC} = - 4\overrightarrow {AC} \); 
B. \(\overrightarrow {BC} = - 2\overrightarrow {AC} \);    
C. \(\overrightarrow {BC} = 2\overrightarrow {AC} \);     
D. \(\overrightarrow {BC} = 4\overrightarrow {AC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \);  
B. \(\overrightarrow {AM} = \frac{2}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \);
C. \(\overrightarrow {AM} = \frac{3}{4}\overrightarrow {AB} + \frac{1}{4}\overrightarrow {AC} \); 
D. \(\overrightarrow {AM} = \frac{5}{4}\overrightarrow {AB} + \frac{3}{4}\overrightarrow {AC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP