Cho \(\Delta ABC\) và \(\Delta MNP\) có \(AB = 2MN;\;\,MP = \frac{1}{2}AC;\;\,BC = 2NP\) thì
Quảng cáo
Trả lời:
Đáp án đúng là: A
Vì \(AB = 2MN;\;\,MP = \frac{1}{2}AC;\;\,BC = 2NP\) nên \(\frac{{AB}}{{MN}} = \frac{{AC}}{{MP}} = \frac{{BC}}{{NP}} = 2.\)
Do đó, \(\Delta ABC \sim \Delta MNP\;\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 16
Vì \(ME\parallel AB\) nên \(\Delta EMC \sim \Delta ABC\) nên \(\frac{{MC}}{{BC}} = \frac{{EM}}{{AB}} = \frac{{EC}}{{AC}} = \frac{2}{3}\).
Do đó, \({P_{EMC}} = \frac{2}{3}{P_{ABC}} = \frac{2}{3} \cdot 24 = 16\,\,\left( {{\rm{cm}}} \right)\)
Câu 2
b) \(\Delta ABC \sim \Delta ANM\).
Lời giải

a) Đúng.
Ta có: \(MN\parallel BC\) nên theo định lí Thalès, ta có: \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).
b) Sai.
Ta có: \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) (cmt) nên \(\Delta ABC \sim \Delta AMN\) (c.c.c).
c) Đúng.
Từ a) ta có: \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) hay \(\frac{{AM}}{4} = \frac{{AN}}{6} = \frac{{MN}}{8} = \frac{{BM}}{6} = \frac{{AM + BM}}{{4 + 6}} = \frac{{AB}}{{10}} = \frac{4}{{10}}\).
Do đó, \(AN = \frac{4}{{10}}AC = \frac{4}{{10}}.6 = 2,4{\rm{ cm}}\).
\(MN = \frac{4}{{10}}.8 = 3,2{\rm{ cm}}\).
d) Đúng.
Ta có \(\Delta AMN \sim \Delta ABC\) theo tỉ số đồng dạng \(k = \frac{4}{{10}} = \frac{2}{5}\) (từ câu b).
Do đó, \(\frac{{{S_{ANM}}}}{{{S_{ABC}}}} = \frac{{M{N^2}}}{{B{C^2}}} = \frac{{{2^2}}}{{{5^2}}} = \frac{4}{{25}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

