Câu hỏi:

17/11/2025 33 Lưu

Cho tam giác nhọn \(ABC\,\,\left( {AB < AC} \right)\). Điểm \(M\) thuộc cạnh \(BC\) sao cho \(\frac{{MB}}{{MC}} = \frac{1}{2}\). Qua \(M\) kẻ đường thẳng song song với \(AB\) cắt \(AC\) \(E\). Biết rằng chu vi \(\Delta ABC\) bằng 24 cm.

Media VietJack

Tính tỉ số \(\frac{{BC}}{{MC}}\). (Kết quả ghi dưới dạng số thập phân)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: 1,5

Ta có \(\frac{{MB}}{{MC}} = \frac{1}{2}\) nên \(\frac{{BC}}{{MC}} = \frac{{BM + MC}}{{MC}} = \frac{{BM}}{{MC}} + \frac{{MC}}{{MC}} = \frac{1}{2} + 1 = \frac{3}{2} = 1,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 16

\(ME\parallel AB\) nên \(\Delta EMC \sim \Delta ABC\) nên \(\frac{{MC}}{{BC}} = \frac{{EM}}{{AB}} = \frac{{EC}}{{AC}} = \frac{2}{3}\).

Do đó, \({P_{EMC}} = \frac{2}{3}{P_{ABC}} = \frac{2}{3} \cdot 24 = 16\,\,\left( {{\rm{cm}}} \right)\)

Câu 2

a) \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).
Đúng
Sai

b) \(\Delta ABC \sim \Delta ANM\).

Đúng
Sai
c) \(AN = 2,4{\rm{ cm}}\), \(MN = 3,2{\rm{ cm}}\).
Đúng
Sai
d) \(\frac{{{S_{ANM}}}}{{{S_{ABC}}}} = \frac{4}{{25}}\).
Đúng
Sai

Lời giải

Media VietJack

a) Đúng.

Ta có: \(MN\parallel BC\) nên theo định lí Thalès, ta có: \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\).

b) Sai.

Ta có: \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) (cmt) nên \(\Delta ABC \sim \Delta AMN\) (c.c.c).

c) Đúng.

Từ a) ta có: \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) hay \(\frac{{AM}}{4} = \frac{{AN}}{6} = \frac{{MN}}{8} = \frac{{BM}}{6} = \frac{{AM + BM}}{{4 + 6}} = \frac{{AB}}{{10}} = \frac{4}{{10}}\).

Do đó, \(AN = \frac{4}{{10}}AC = \frac{4}{{10}}.6 = 2,4{\rm{ cm}}\).

            \(MN = \frac{4}{{10}}.8 = 3,2{\rm{ cm}}\).

d) Đúng.

Ta có \(\Delta AMN \sim \Delta ABC\) theo tỉ số đồng dạng \(k = \frac{4}{{10}} = \frac{2}{5}\) (từ câu b).

Do đó, \(\frac{{{S_{ANM}}}}{{{S_{ABC}}}} = \frac{{M{N^2}}}{{B{C^2}}} = \frac{{{2^2}}}{{{5^2}}} = \frac{4}{{25}}\).

Câu 3

A. \(AC = 2\,\,{\rm{cm}}{\rm{.}}\)
B. \(NP = 9\,\,{\rm{cm}}{\rm{.}}\)   
C. \(\Delta MNP\) cân tại \(M.\)    
D. \(\Delta ABC\) cân tại \(C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(NP = 2,5\,\,{\rm{cm}},\,\,AC = 12\,\,{\rm{cm}}.\)  
B. \(NP = 5\,\,{\rm{cm}},\,\,AC = 10\,\,{\rm{cm}}.\)
C. \(NP = 12\,\,{\rm{cm}},\,\,AC = 2,5\,\,{\rm{cm}}.\)            
D. \(NP = 10\,\,{\rm{cm}},\,\,AC = 5\,\,{\rm{cm}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}.\)
Đúng
Sai
b) \(\Delta ABD \sim \Delta DBC.\)
Đúng
Sai
c) \(AB\parallel CD.\)
Đúng
Sai
d) \(ABCD\) là hình thang vuông.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\Delta ABC \sim \Delta HKI.\)
B. \(\Delta BCA \sim \Delta IKH.\)        
C. \(\Delta CBA \sim \Delta KHI.\)    
D. \(\Delta BAC \sim \Delta IHK.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP