Hàm số nào sau đây liên tục tại \(x = 2\)?
\(f\left( x \right) = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\).
\(f\left( x \right) = \frac{{x + 1}}{{x - 2}}\).
\(f\left( x \right) = \frac{{{x^2} + x + 1}}{{x - 2}}\).
\(f\left( x \right) = \frac{{3{x^2} - x - 2}}{{{x^2} - 4}}\).
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A
Xét hàm số \(f\left( x \right) = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}.\)
Hàm số \(f\left( x \right) = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) là hàm phân thức nên nó liên tục trên tập xác định \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\) chứa \(x = 2.\)
Như vậy, hàm số \(f\left( x \right) = \frac{{2{x^2} + 6x + 1}}{{x + 2}}\) cũng sẽ liên tục tại \(x = 2.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(\left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)
\(\left( {BMN} \right){\rm{//}}\left( {SAD} \right).\)
\(\left( {BMN} \right){\rm{//}}\left( {ABCD} \right).\)
\(\left( {BMN} \right){\rm{//}}\left( {SBC} \right).\)
Lời giải
Đáp án đúng là: A

Vì \(N\) là trung điểm của \(AD\) nên \(NA = ND = \frac{{AD}}{2} = BC.\)
Xét tứ giác \(BCDN\) có: \(ND = BC\) và \(ND{\rm{//}}BC\) (do \(AD{\rm{//}}BC\)).
Suy ra \(BCDN\) là hình bình hành.
\( \Rightarrow NB{\rm{//}}CD\) mà \(CD \subset \left( {SCD} \right)\) nên \(NB{\rm{//}}\left( {SCD} \right).\)
Xét tam giác \(SAD\) có: \(M,\,\,N\) lần lượt là trung điểm của \(SA\) và \(AD.\)
Suy ra \(MN\) là đường trung bình của tam giác \(SAD.\)
\( \Rightarrow MN{\rm{//}}SD\) mà \(SD \subset \left( {SCD} \right)\) nên \(MN{\rm{//}}\left( {SCD} \right).\)
Ta có: \(NB{\rm{//}}\left( {SCD} \right);\,\,MN{\rm{//}}\left( {SCD} \right)\) và \(NB \cap MN = N\) trong \(\left( {BMN} \right).\)
\( \Rightarrow \left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)
Câu 2
\(\left( {ABCD} \right){\rm{//}}\left( {A'B'C'D'} \right).\)
\(\left( {ABB'A'} \right){\rm{//}}\left( {CDD'C'} \right).\)
\(\left( {AA'D'D} \right){\rm{//}}\left( {BB'C'C} \right).\)
\(\left( {BDD'B'} \right){\rm{//}}\left( {ACC'A'} \right).\)
Lời giải
Đáp án đúng là: D

Vì \(ABCD.A'B'C'D'\) là hình hộp nên ta có: \(\left\{ \begin{array}{l}\left( {ABCD} \right){\rm{//}}\left( {A'B'C'D'} \right)\\\left( {AA'D'D} \right){\rm{//}}\left( {BB'C'C} \right)\\\left( {ABB'A'} \right){\rm{//}}\left( {CDD'C'} \right)\end{array} \right.\)
Như vậy, ba phương án A, B, C đúng.
Phương án D sai vì:
Gọi \(O = AC \cap BD.\)
Mà \(AC \subset \left( {ACC'A'} \right);\,\,BD \subset \left( {BDD'B'} \right).\)
\( \Rightarrow O \in \left( {BDD'B'} \right) \cap \left( {ACC'A'} \right).\)
Suy ra hai mặt phẳng \(\left( {BDD'B'} \right)\) và \(\left( {ACC'A'} \right)\) không song song với nhau.
Câu 3
Thiết diện là hình bình hành.
Thiết diện là hình chữ nhật.
Thiết diện là hình vuông.
Thiết diện là hình thang cân.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Nếu \(b{\rm{//}}\left( \alpha \right)\) thì \(b{\rm{//}}a.\)
Nếu \(b{\rm{//}}a\) thì \(b{\rm{//}}\left( \alpha \right).\)
Nếu \(b\) cắt \(\left( \alpha \right)\) và \(\left( \beta \right)\) chứa \(b\) thì giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) là đường thẳng cắt cả \(a\) và \(b.\)
Nếu \(b\) cắt \(\left( \alpha \right)\) thì \(b\) cắt \(a.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\( - \infty \).
\(2\).
\(1\).
\( + \infty \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.