Cho hình chóp \(S.ABCD\) với đáy \(ABCD\) là hình thang có \(AD{\rm{//}}BC\) và \(AD = 2BC.\) Gọi \(M,\,\,N\) lần lượt là trung điểm của \(SA\) và \(AD.\) Mệnh đề nào sau đây đúng?
\(\left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)
\(\left( {BMN} \right){\rm{//}}\left( {SAD} \right).\)
\(\left( {BMN} \right){\rm{//}}\left( {ABCD} \right).\)
\(\left( {BMN} \right){\rm{//}}\left( {SBC} \right).\)
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: A

Vì \(N\) là trung điểm của \(AD\) nên \(NA = ND = \frac{{AD}}{2} = BC.\)
Xét tứ giác \(BCDN\) có: \(ND = BC\) và \(ND{\rm{//}}BC\) (do \(AD{\rm{//}}BC\)).
Suy ra \(BCDN\) là hình bình hành.
\( \Rightarrow NB{\rm{//}}CD\) mà \(CD \subset \left( {SCD} \right)\) nên \(NB{\rm{//}}\left( {SCD} \right).\)
Xét tam giác \(SAD\) có: \(M,\,\,N\) lần lượt là trung điểm của \(SA\) và \(AD.\)
Suy ra \(MN\) là đường trung bình của tam giác \(SAD.\)
\( \Rightarrow MN{\rm{//}}SD\) mà \(SD \subset \left( {SCD} \right)\) nên \(MN{\rm{//}}\left( {SCD} \right).\)
Ta có: \(NB{\rm{//}}\left( {SCD} \right);\,\,MN{\rm{//}}\left( {SCD} \right)\) và \(NB \cap MN = N\) trong \(\left( {BMN} \right).\)
\( \Rightarrow \left( {BMN} \right){\rm{//}}\left( {SCD} \right).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(\left( {ABCD} \right){\rm{//}}\left( {A'B'C'D'} \right).\)
\(\left( {ABB'A'} \right){\rm{//}}\left( {CDD'C'} \right).\)
\(\left( {AA'D'D} \right){\rm{//}}\left( {BB'C'C} \right).\)
\(\left( {BDD'B'} \right){\rm{//}}\left( {ACC'A'} \right).\)
Lời giải
Đáp án đúng là: D

Vì \(ABCD.A'B'C'D'\) là hình hộp nên ta có: \(\left\{ \begin{array}{l}\left( {ABCD} \right){\rm{//}}\left( {A'B'C'D'} \right)\\\left( {AA'D'D} \right){\rm{//}}\left( {BB'C'C} \right)\\\left( {ABB'A'} \right){\rm{//}}\left( {CDD'C'} \right)\end{array} \right.\)
Như vậy, ba phương án A, B, C đúng.
Phương án D sai vì:
Gọi \(O = AC \cap BD.\)
Mà \(AC \subset \left( {ACC'A'} \right);\,\,BD \subset \left( {BDD'B'} \right).\)
\( \Rightarrow O \in \left( {BDD'B'} \right) \cap \left( {ACC'A'} \right).\)
Suy ra hai mặt phẳng \(\left( {BDD'B'} \right)\) và \(\left( {ACC'A'} \right)\) không song song với nhau.
Câu 2
Thiết diện là hình bình hành.
Thiết diện là hình chữ nhật.
Thiết diện là hình vuông.
Thiết diện là hình thang cân.
Lời giải
Đáp án đúng là: A

Trong \(\left( {ABC} \right)\): qua \(H\) kẻ đường thẳng \(d\) song song với \(AB\) và cắt \(BC,\,\,AC\) lần lượt tại \(M,\,\,N.\)
Trong \(\left( {ACD} \right)\): từ \(N\) kẻ \(NP\) song song với \(CD\,\,\left( {P \in CD} \right).\)
Trong \(\left( {ABD} \right)\): từ \(P\) kẻ \(PQ\) song song với \(AB\,\,\left( {Q \in BD} \right).\)
Ta có \(MN{\rm{//}}PQ\) (do cùng song song với \(AB\)) nên \(M,\,\,N,\,\,P,\,\,Q\) đồng phẳng.
Ta có: \(AB{\rm{//}}MN;\,\,MN \subset \left( {MNPQ} \right) \Rightarrow AB{\rm{//}}\left( {MNPQ} \right);\)
\({\rm{CD//}}NP;\,\,NP \subset \left( {MNPQ} \right) \Rightarrow CD{\rm{//}}\left( {MNPQ} \right);\)
Hơn nữa \(H \in MN\) mà \(MN \subset \left( {MNPQ} \right)\) nên \(H \in \left( {MNPQ} \right).\)
Từ các kết quả trên ta có: \(\left( \alpha \right) \equiv \left( {MNPQ} \right).\)
Dễ dàng có được:
\(\left( \alpha \right) \cap \left( {ABC} \right) = MN;\)
\(\left( \alpha \right) \cap \left( {ACD} \right) = NP;\)
\(\left( \alpha \right) \cap \left( {ABD} \right) = PQ;\)
\(\left( \alpha \right) \cap \left( {BCD} \right) = QM.\)
Suy ra thiết diện của \(\left( \alpha \right)\) với tứ diện \(ABCD\) là \(MNPQ.\)
Xét ba mặt phẳng \(\left( {ACD} \right),\,\,\left( {BCD} \right),\,\,\left( {MNPQ} \right)\) có:
\(\left\{ \begin{array}{l}\left( {ACD} \right) \cap \,\left( {BCD} \right) = CD\\\left( {ACD} \right) \cap \left( {MNPQ} \right) = NP\\\left( {BCD} \right) \cap \left( {MNPQ} \right) = QM\end{array} \right.\) và \(CD{\rm{//}}NP\) nên \(CD{\rm{//}}NP{\rm{//}}QM.\)
Xét tứ giác \(MNPQ\) có: \(MN{\rm{//}}PQ\) và \(NP{\rm{//}}QM\) nên \(MNPQ\) là hình bình hành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\( - \infty \).
\(2\).
\(1\).
\( + \infty \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Nếu \(b{\rm{//}}\left( \alpha \right)\) thì \(b{\rm{//}}a.\)
Nếu \(b{\rm{//}}a\) thì \(b{\rm{//}}\left( \alpha \right).\)
Nếu \(b\) cắt \(\left( \alpha \right)\) và \(\left( \beta \right)\) chứa \(b\) thì giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) là đường thẳng cắt cả \(a\) và \(b.\)
Nếu \(b\) cắt \(\left( \alpha \right)\) thì \(b\) cắt \(a.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.