Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(I,\,\,J,\,\,E,\,\,F\) lần lượt là trung điểm \(SA,\,\,SB,\,\,SC,\,\,SD.\) Trong các đường thẳng sau, đường thẳng nào không song song với \[IJ?\]
\[EF.\]
\[DC.\]
\[AD.\]
\[AB.\]
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C

Vì \(I,\,\,J\) lần lượt là trung điểm \(SA,\,\,SB\) nên \[IJ\] là đường trung bình của tam giác \(SAB,\) do đó \(IJ\,{\rm{//}}\,AB\).
Tương tự, \(EF\) cũng là đường trung bình của tam giác \(SCD\) nên \[EF\,{\rm{//}}\,CD.\]
Mà \[CD\,{\rm{// }}AB\] (đáy \(ABCD\) là hình bình hành).
Do đó, bốn đường thẳng \(AB,\,\,CD,\,\,EF,\,\,IJ\) đôi một song song với nhau.
Vậy đường thẳng \[IJ\] không song song với đường thẳng \[AD.\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)
Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)
Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)
\( \Rightarrow OM//SD.\)
Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)
\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)
b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)
\[ \Rightarrow K \in AN;\,\,K \in CD.\]
Mà \(AN \subset \left( {AMN} \right)\) và \(CD \subset \left( {SCD} \right).\)
\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)
Vì \(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\) Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]
\( \Rightarrow H \in MN;\,\,H \in SC.\)
Mà \(MN \subset \left( {AMN} \right)\) và \(SC \subset \left( {SCD} \right).\)
\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)
Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)
Câu 2
\[\left( {BCE} \right){\rm{//}}\left( {DIK} \right).\]
\[\left( {ADF} \right){\rm{//}}\left( {BCE} \right).\]
\(\left( {BCE} \right){\rm{//}}\left( {BEJ} \right).\)
\[\left( {ADF} \right){\rm{//}}\left( {BEJ} \right).\]
Lời giải
Đáp án đúng là: B

Do \(ABEF\) là hình bình hành nên \(AF{\rm{//}}BE.\)
Mà \(BE \subset \left( {BCE} \right);\,\,AF \not\subset \left( {BCE} \right) \Rightarrow AF{\rm{//}}\left( {BCE} \right).\)
Do \(ABCD\) là hình bình hành nên \(AD{\rm{//}}BC.\)
Mà \(BC \subset \left( {BCE} \right);\,\,AD \not\subset \left( {BCE} \right) \Rightarrow AD{\rm{//}}\left( {BCE} \right).\)
Ta có: \(AF{\rm{//}}\left( {BCE} \right);\,\,AD{\rm{//}}\left( {BCE} \right)\) và \(AF \cap AD = A\) trong \(\left( {ADF} \right).\)
Suy ra \[\left( {ADF} \right){\rm{//}}\left( {BCE} \right).\]
Câu 3
\(m \in \left\{ { - 4;\,\,1} \right\}.\)
\(m \in \left\{ { - 1;\,\,4} \right\}.\)
\(m \in \left\{ {0;\,\, - 3} \right\}.\)
\(m \in \left\{ {0;\,\,2} \right\}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Điểm \(A'.\)
Điểm \(C'.\)
Điểm \(B'.\)
Điểm \(I'.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\[Q \in \left( {CDP} \right).\]
\[QG\] cắt \(\left( {BCD} \right).\)
\[MP{\rm{//}}\left( {BCD} \right).\]
\[GQ{\rm{//}}\left( {BCD} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
