Trong các mệnh đề sau mệnh đề nào sai?
Phép chiếu song song biến đường thẳng thành đường thẳng, biến tia thành tia, biến đoạn thẳng thành đoạn thẳng.
Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song.
Phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không thay đổi thứ tự của ba điểm đó.
Phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc cùng nằm trên một đường thẳng.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Phương án B mang nội dung sai vì phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)
Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)
Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)
\( \Rightarrow OM//SD.\)
Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)
\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)
b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)
\[ \Rightarrow K \in AN;\,\,K \in CD.\]
Mà \(AN \subset \left( {AMN} \right)\) và \(CD \subset \left( {SCD} \right).\)
\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)
Vì \(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\) Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]
\( \Rightarrow H \in MN;\,\,H \in SC.\)
Mà \(MN \subset \left( {AMN} \right)\) và \(SC \subset \left( {SCD} \right).\)
\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)
Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)
Câu 2
\[\left( {BCE} \right){\rm{//}}\left( {DIK} \right).\]
\[\left( {ADF} \right){\rm{//}}\left( {BCE} \right).\]
\(\left( {BCE} \right){\rm{//}}\left( {BEJ} \right).\)
\[\left( {ADF} \right){\rm{//}}\left( {BEJ} \right).\]
Lời giải
Đáp án đúng là: B

Do \(ABEF\) là hình bình hành nên \(AF{\rm{//}}BE.\)
Mà \(BE \subset \left( {BCE} \right);\,\,AF \not\subset \left( {BCE} \right) \Rightarrow AF{\rm{//}}\left( {BCE} \right).\)
Do \(ABCD\) là hình bình hành nên \(AD{\rm{//}}BC.\)
Mà \(BC \subset \left( {BCE} \right);\,\,AD \not\subset \left( {BCE} \right) \Rightarrow AD{\rm{//}}\left( {BCE} \right).\)
Ta có: \(AF{\rm{//}}\left( {BCE} \right);\,\,AD{\rm{//}}\left( {BCE} \right)\) và \(AF \cap AD = A\) trong \(\left( {ADF} \right).\)
Suy ra \[\left( {ADF} \right){\rm{//}}\left( {BCE} \right).\]
Câu 3
\(m \in \left\{ { - 4;\,\,1} \right\}.\)
\(m \in \left\{ { - 1;\,\,4} \right\}.\)
\(m \in \left\{ {0;\,\, - 3} \right\}.\)
\(m \in \left\{ {0;\,\,2} \right\}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Điểm \(A'.\)
Điểm \(C'.\)
Điểm \(B'.\)
Điểm \(I'.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\[Q \in \left( {CDP} \right).\]
\[QG\] cắt \(\left( {BCD} \right).\)
\[MP{\rm{//}}\left( {BCD} \right).\]
\[GQ{\rm{//}}\left( {BCD} \right).\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
